Source code for matching.theoryPrediction

"""
.. module:: theoryPrediction
   :synopsis: Provides a class to encapsulate the results of the computation of
              reference cross sections and related functions.

.. moduleauthor:: Andre Lessa <lessa.a.p@gmail.com>
"""

from smodels.base.physicsUnits import TeV, fb
from smodels.experiment.datasetObj import CombinedDataSet
from smodels.experiment.databaseObj import Database
from smodels.matching.exceptions import SModelSMatcherError as SModelSError
from smodels.matching import clusterTools
from smodels.base.smodelsLogging import logger
from smodels.statistics.statsTools import StatsComputer
from typing import Union, Text, Dict
import numpy as np

__all__ = [ "TheoryPrediction", "theoryPredictionsFor", "TheoryPredictionsCombiner" ]

[docs]class TheoryPrediction(object): """ An instance of this class represents the results of the theory prediction for an analysis. """ def __init__(self, deltas_rel=None): """ Initialize the theory prediction object. deltas_rel is meant to be a constant. :param deltas_rel: relative uncertainty in signal (float). Default value is 20%. """ self.analysis = None self.xsection = None self.conditions = None self.mass = None self.totalwidth = None if deltas_rel is None: from smodels.base.runtime import _deltas_rel_default deltas_rel = _deltas_rel_default self.deltas_rel = deltas_rel self.cachedObjs = {False: {}, True: {}, "posteriori": {}} self.cachedNlls = {False: {}, True: {}, "posteriori": {}} self._statsComputer = None def __str__(self): ret = "%s:%s" % (self.analysisId(), self.totalXsection()) return ret
[docs] def dataId(self): """ Return ID of dataset """ return self.dataset.getID()
[docs] def analysisId(self): """ Return experimental analysis ID """ return self.dataset.globalInfo.id
[docs] def dataType(self, short=False): """ Return the type of dataset :param: short, if True, return abbreviation (ul,em,comb) """ if short: t = self.dataset.getType() D = {"upperLimit": "ul", "efficiencyMap": "em", "combined": "comb"} if t in D.keys(): return D[t] return "??" return self.dataset.getType()
[docs] def computeXSection(self): xsection = 0*fb # Adds the contributions of all txnames # (for an UL result there will be a single txname) for tx in self.txnames: # Filter the SMS smsList = [sms for sms in self.smsList if sms.txname is tx] # Build dictionary needed for evaluation: xsection += tx.evalConstraintFor(smsList) self.xsection = xsection
[docs] def computeConditions(self): # Adds the contributions of all txnames # (for an UL result there will be a single txname # and for EM results there should be no conditions) allConditions = [] for tx in self.txnames: # Filter the SMS smsList = [sms for sms in self.smsList if sms.txname is tx] cond = tx.evalConditionsFor(smsList) if cond is None: continue allConditions += cond if not allConditions: self.conditions = None else: self.conditions = allConditions[:]
[docs] def totalXsection(self): return self.xsection
[docs] def getmaxCondition(self): """ Returns the maximum xsection from the list conditions :returns: maximum condition xsection (float) """ if not self.conditions: return 0.0 values = [0.0] for value in self.conditions: if value == "N/A" or value is None: continue values.append(float(value)) return max(values)
@property def statsComputer(self): if self._statsComputer is None: self.setStatsComputer() return self._statsComputer
[docs] def setStatsComputer(self): """ Creates and instance of StatsComputer depending on the type of TheoryPrediction/dataset. In case it is not possible to define a statistical computer (upper limit result or no expected upper limits), set the computer to 'N/A'. """ if self.dataType() == "upperLimit": from smodels.base.runtime import experimentalFeatures if not experimentalFeatures(): computer = 'N/A' else: computer = StatsComputer.forTruncatedGaussian(self) if computer is None: # No expected UL available computer = 'N/A' elif self.dataType() == "efficiencyMap": nsig = (self.xsection * self.dataset.getLumi()).asNumber() computer = StatsComputer.forSingleBin(dataset=self.dataset, nsig=nsig, deltas_rel=self.deltas_rel ) elif self.dataType() == "combined": # Get dictionary with dataset IDs and signal yields srNsigDict = {pred.dataset.getID() : (pred.xsection*pred.dataset.getLumi()).asNumber() for pred in self.datasetPredictions} # Get ordered list of datasets: if hasattr(self.dataset.globalInfo, "covariance"): datasetList = self.dataset.globalInfo.datasetOrder[:] # Get list of signal yields corresponding to the dataset order: srNsigs = [srNsigDict[dataID] if dataID in srNsigDict else 0.0 for dataID in datasetList] # Get computer computer = StatsComputer.forMultiBinSL(dataset=self.dataset, nsig=srNsigs, deltas_rel = self.deltas_rel) elif hasattr(self.dataset.globalInfo, "jsonFiles"): datasetList = [ds.getID() for ds in self.dataset.origdatasets] # Get list of signal yields corresponding to the dataset order: srNsigs = [srNsigDict[dataID] if dataID in srNsigDict else 0.0 for dataID in datasetList] # Get computer computer = StatsComputer.forPyhf(dataset=self.dataset, nsig=srNsigs, deltas_rel = self.deltas_rel) self._statsComputer = computer
[docs] def getUpperLimit(self, expected=False): """ Get the upper limit on sigma*eff. For UL-type results, use the UL map. For EM-Type returns the corresponding dataset (signal region) upper limit. For combined results, returns the upper limit on the total sigma*eff (for all signal regions/datasets). :param expected: return expected Upper Limit, instead of observed. :return: upper limit (Unum object) """ # First check if the upper-limit and expected upper-limit have already been computed. # If not, compute it and store them. if "UL" not in self.cachedObjs[expected]: ul = None if self.dataType() == "efficiencyMap": ul = self.dataset.getSRUpperLimit(expected=expected) if self.dataType() == "upperLimit": ul = self.dataset.getUpperLimitFor( sms=self.avgSMS, txnames=self.txnames, expected=expected ) if self.dataType() == "combined": ul = self.statsComputer.poi_upper_limit(expected = expected, limit_on_xsec = True) self.cachedObjs[expected]["UL"] = ul return self.cachedObjs[expected]["UL"]
[docs] def getUpperLimitOnMu(self, expected=False): """ Get upper limit on signal strength multiplier, using the theory prediction value and the corresponding upper limit (i.e. mu_UL = upper limit/theory xsec) :param expected: if True, compute expected upper limit, else observed :returns: upper limit on signal strength multiplier mu """ upperLimit = self.getUpperLimit(expected=expected) xsec = self.totalXsection() if xsec is None or upperLimit is None: return None muUL = (upperLimit/xsec).asNumber() return muUL
[docs] def getRValue(self, expected=False): """ Get the r value = theory prediction / experimental upper limit """ if "r" not in self.cachedObjs[expected]: upperLimit = self.getUpperLimit(expected) if upperLimit is None or upperLimit.asNumber(fb) == 0.0: r = None self.cachedObjs[expected]["r"] = r return r else: r = (self.totalXsection()/upperLimit).asNumber() self.cachedObjs[expected]["r"] = r return r return self.cachedObjs[expected]["r"]
[docs] def whenDefined(function): """ Returns the function whenever the statistical calculation is possible (i.e. when it is possible to define self.StatsComputer) """ def wrapper(self, *args, **kwargs): if self.statsComputer == 'N/A': return None else: return function(self, *args, **kwargs) return wrapper
[docs] @whenDefined def lsm(self, expected=False, return_nll : bool = False ): """likelihood at SM point, same as .def likelihood( ( mu = 0. )""" if "nll_sm" not in self.cachedObjs[expected]: self.computeStatistics(expected) if "nll_sm" not in self.cachedObjs[expected]: self.cachedObjs[expected]["lsm"] = None return self.nllToLikelihood ( self.cachedObjs[expected]["nll_sm"], return_nll )
[docs] @whenDefined def lmax(self, expected=False, return_nll : bool = False ): """likelihood at mu_hat""" if not "nllmax" in self.cachedObjs[expected]: self.computeStatistics(expected) return self.nllToLikelihood ( self.cachedObjs[expected]["nllmax"], return_nll )
[docs] @whenDefined def CLs(self, mu : float = 1., expected : Union[Text,bool] = False ) -> \ Union[float,None]: """ obtain the CLs value of the combination for a given poi value "mu" """ if not "CLs" in self.cachedObjs[expected]: self.cachedObjs[expected]["CLs"] = {} if mu in self.cachedObjs[expected]["CLs"]: return self.cachedObjs[expected]["CLs"][mu] cls = self.statsComputer.CLs ( poi_test = mu, expected = expected ) self.cachedObjs[expected]["CLs"][mu] = cls return cls
[docs] @whenDefined def sigma_mu(self, expected=False): """sigma_mu of mu_hat""" if not "sigma_mu" in self.cachedObjs[expected]: self.computeStatistics(expected) return self.cachedObjs[expected]["sigma_mu"]
[docs] @whenDefined def muhat(self, expected=False): """position of maximum likelihood""" if not "muhat" in self.cachedObjs[expected]: self.computeStatistics(expected) return self.cachedObjs[expected]["muhat"]
[docs] @whenDefined def likelihood(self, mu=1.0, expected=False, return_nll=False, useCached=True): """ get the likelihood for a signal strength modifier mu :param expected: compute expected, not observed likelihood. if "posteriori", compute expected posteriori. :param return_nll: if True, return negative log likelihood, else likelihood :param useCached: if True, will return the cached value, if available """ if useCached and mu in self.cachedNlls[expected]: nll = self.cachedNlls[expected][mu] return self.nllToLikelihood ( nll, return_nll ) if useCached: if "nll" in self.cachedObjs[expected] and abs(mu - 1.0) < 1e-5: nll = self.cachedObjs[expected]["nll"] return self.nllToLikelihood ( nll, return_nll ) if "nll_sm" in self.cachedObjs[expected] and abs(mu) < 1e-5: nllsm = self.cachedObjs[expected]["nll_sm"] return self.nllToLikelihood ( nllsm, return_nll ) # for truncated gaussians the fits only work with negative signals! nll = self.statsComputer.likelihood(poi_test = mu, expected = expected, return_nll = True ) self.cachedNlls[expected][mu] = nll return self.nllToLikelihood ( nll, return_nll )
[docs] def nllToLikelihood ( self, nll : Union[None,float], return_nll : bool ): """ if not return_nll, then compute likelihood from nll """ if return_nll: return nll return np.exp ( - nll ) if nll is not None else None
[docs] @whenDefined def computeStatistics(self, expected=False): """ Compute the likelihoods, and upper limit for this theory prediction. The resulting values are stored as the likelihood, lmax, and lsm attributes. :param expected: computed expected quantities, not observed """ if not "lmax" in self.cachedObjs[expected]: self.cachedObjs[expected]["lmax"] = {} self.cachedObjs[expected]["muhat"] = {} self.cachedObjs[expected]["sigma_mu"] = {} # Compute likelihoods and related parameters: llhdDict = self.statsComputer.get_five_values(expected = expected, return_nll = True ) if llhdDict not in [ None, {} ]: self.cachedObjs[expected]["nll"] = llhdDict["lbsm"] self.cachedObjs[expected]["nll_sm"] = llhdDict["lsm"] self.cachedObjs[expected]["nllmax"] = llhdDict["lmax"] self.cachedObjs[expected]["muhat"] = llhdDict["muhat"] self.cachedObjs[expected]["sigma_mu"] = llhdDict["sigma_mu"]
[docs]class TheoryPredictionsCombiner(TheoryPrediction): """ Facility used to combine theory predictions from different analyes. If a list with a single TheoryPrediction is given, return the TheoryPrediction object. """ def __new__(cls,theoryPredictions: list, slhafile=None, deltas_rel=None): """ If called with a list containing a single TheoryPrediction, return the TheoryPrediction object. Otherwise, create a TheoryPredictionsCombiner object. """ if len(theoryPredictions) == 1: return theoryPredictions[0] else: tpCombiner = super(TheoryPredictionsCombiner, cls).__new__(cls) return tpCombiner def __init__(self, theoryPredictions: list, slhafile=None, deltas_rel=None): """ Constructor. :param theoryPredictions: the List of theory predictions :param slhafile: optionally, the slhafile can be given, for debugging :param deltas_rel: relative uncertainty in signal (float). Default value is 20%. """ if len(theoryPredictions) == 0: raise SModelSError("asking to combine zero theory predictions") self.theoryPredictions = theoryPredictions self.slhafile = slhafile if deltas_rel is None: from smodels.base.runtime import _deltas_rel_default deltas_rel = _deltas_rel_default self.deltas_rel = deltas_rel self.cachedObjs = {False: {}, True: {}, "posteriori": {}} self.cachedNlls = {False: {}, True: {}, "posteriori": {}} self._statsComputer = None
[docs] @classmethod def selectResultsFrom(cls, theoryPredictions, anaIDs): """ Select the results from theoryPrediction list which match one of the IDs in anaIDs. If there are multiple predictions for the same ID for which a likelihood is available, it gives priority to the ones with largest expected r-values. :param theoryPredictions: list of TheoryPrediction objects :param anaIDs: list with the analyses IDs (in string format) to be combined :return: a TheoryPredictionsCombiner object for the selected predictions. If no theory prediction was selected, return None. """ # First select the theory predictions which correspond to the analyses to be combined filteredTPs = [tp for tp in theoryPredictions if tp.analysisId() in anaIDs] filteredIDs = set([tp.analysisId() for tp in filteredTPs]) # Now remove results with no likelihood available selectedTPs = [tp for tp in filteredTPs if tp.likelihood() is not None] selectedIDs = set([tp.analysisId() for tp in selectedTPs]) # Warn the user concerning results with no likelihoods: for anaID in filteredIDs.difference(selectedIDs): logger.info( "No likelihood available for %s. This analysis will not be used in analysis combination." % anaID ) # If no results are available, return None if len(selectedTPs) == 0: return None # Define a hierarchy for the results: priority = {"combined": 2, "efficiencyMap": 1, "upperLimit": 0} # Now sort by highest priority and then by highest expected r-value: selectedTPs = sorted( selectedTPs, key=lambda tp: (priority[tp.dataType()], tp.getRValue(expected=True)) ) # Now get a single TP for each result # (the highest ranking analyses come last and are kept in the dict) uniqueTPs = {tp.analysisId(): tp for tp in selectedTPs} uniqueTPs = list(uniqueTPs.values()) combiner = cls(uniqueTPs) return combiner
[docs] def dataId(self): """ Return a string with the IDs of all the datasets used in the combination. """ ids = [str(tp.dataset.getID()) for tp in self.theoryPredictions] ret = ",".join(ids) return ret
[docs] def analysisId(self): """ Return a string with the IDs of all the experimental results used in the combination. """ ret = ",".join(sorted([tp.analysisId() for tp in self.theoryPredictions])) return ret
[docs] def dataType(self, short=False): """ Return its type (combined) :param: short, if True, return abbreviation (anacomb) """ if short: return "comb" else: return "combined"
[docs] def totalXsection(self): ret = 0.0 * fb if self.theoryPredictions is not None: for tp in self.theoryPredictions: ret += tp.xsection return ret
[docs] def getmaxCondition(self): """ Returns the maximum xsection from the list conditions :returns: maximum condition xsection (float) """ conditions = [tp.getmaxCondition() for tp in self.theoryPredictions] return max(conditions)
[docs] def setStatsComputer(self): """ Creates and instance of StatsComputer depending on the type of TheoryPrediction/dataset. In case it is not possible to define a statistical computer (upper limit result or no expected upper limits), set the computer to 'N/A'. """ # First make sure all theory predictions in the combiner # have well-defined stats models if any(tp.statsComputer == 'N/A' for tp in self.theoryPredictions): computer = 'N/A' else: computer = StatsComputer.forAnalysesComb(self.theoryPredictions, self.deltas_rel) self._statsComputer = computer
[docs] def getLlhds(self,muvals,expected=False,normalize=True): """ Facility to access the likelihoods for the individual analyses and the combined likelihood. Returns a dictionary with the analysis IDs as keys and the likelihood values as values. Mostly used for plotting the likelihoods. :param muvals: List with values for the signal strenth for which the likelihoods must be evaluated. :param expected: If True returns the expected likelihood values. :param normalize: If True normalizes the likelihood by its integral over muvals. """ return self.statsComputer.likelihoodComputer.getLlhds(muvals,expected,normalize)
[docs] def describe(self): """returns a string containing a list of all analysisId and dataIds""" ids = [] for tp in self.theoryPredictions: ids.append(f"{tp.analysisId()}:{tp.dataId()}") return f"SRs: {', '.join(ids)}"
class TheoryPredictionList(object): """ An instance of this class represents a collection of theory prediction objects. """ def __init__(self, theoryPredictions=None, maxCond=None): """ Initializes the list. :parameter theoryPredictions: list of TheoryPrediction objects :parameter maxCond: maximum relative violation of conditions for valid results. If defined, it will keep only the theory predictions with condition violation < maxCond. """ self._theoryPredictions = [] if theoryPredictions and isinstance(theoryPredictions, (TheoryPredictionList,list)): if not maxCond: self._theoryPredictions = theoryPredictions else: newPredictions = [] for theoPred in theoryPredictions: mCond = theoPred.getmaxCondition() if mCond != "N/A" and round(mCond/maxCond, 2) > 1.0: continue else: newPredictions.append(theoPred) self._theoryPredictions = newPredictions def append(self, theoryPred): self._theoryPredictions.append(theoryPred) def __str__(self): if len(self._theoryPredictions) == 0: return "no predictions." ret = "%d predictions: " % len(self._theoryPredictions) ret += ", ".join([str(s) for s in self._theoryPredictions]) return ret def __iter__(self): for theoryPrediction in self._theoryPredictions: yield theoryPrediction def __getitem__(self, index): return self._theoryPredictions[index] def __len__(self): return len(self._theoryPredictions) def __add__(self, theoPredList): if isinstance(theoPredList, TheoryPredictionList): res = TheoryPredictionList() res._theoryPredictions = self._theoryPredictions + theoPredList._theoryPredictions return res else: return None def __radd__(self, theoPredList): if theoPredList == 0: return self else: return self.__add__(theoPredList) def sortTheoryPredictions(self): """ Reverse sort theoryPredictions by R value. Used for printer. """ self._theoryPredictions = sorted( self._theoryPredictions, key=lambda theoPred: (theoPred.getRValue() is not None, theoPred.getRValue()), reverse=True, )
[docs]def theoryPredictionsFor(database : Database, smsTopDict : Dict, maxMassDist : float = 0.2, useBestDataset : bool = True, combinedResults : bool = True, deltas_rel : Union[None,float] = None): """ Compute theory predictions for the given experimental result, using the list of SMS in smsTopDict. For each Txname appearing in expResult, it collects the SMS and efficiencies, combine the SMS and compute the conditions (if exist). :parameter database: the database with the selected experimental results :parameter smsTopDict: dictionary of SMS, where the canonical names are keys and the TheorySMS objects are values. (TopologyDict object) :parameter maxMassDist: maximum mass distance for clustering SMS (float) :parameter useBestDataset: If True, uses only the best dataset (signal region). If False, returns predictions for all datasets (if combinedResults is False), or only the combinedResults (if combinedResults is True). :parameter combinedResults: add theory predictions that result from combining datasets. :parameter deltas_rel: relative uncertainty in signal (float). Default value is 20%. :returns: a TheoryPredictionList object containing a list of TheoryPrediction objects """ if deltas_rel is None: from smodels.base.runtime import _deltas_rel_default deltas_rel = _deltas_rel_default if not isinstance(database,Database): errorMsg = "The argument for theoryPredictionsFor should be a" errorMsg += " database with the selected experimental results and not %s" %type(database) logger.error(errorMsg) raise SModelSError(errorMsg) # Compute matches between TheorySMS from decomposition and the # (unique) ExpSMS in the database expSMSDict = database.expSMSDict # Compute dictionary with matches: smsMatch = expSMSDict.getMatchesFrom(smsTopDict) ret = [] for expResult in database.expResultList: dataSetResults = [] # Compute predictions for each data set (for UL analyses there is one single set) for dataset in expResult.datasets: predList = _getDataSetPredictions(dataset, smsMatch, expSMSDict, maxMassDist) if predList: dataSetResults.append(predList) if not dataSetResults: # no results at all? continue # For results with more than one dataset keep all dataset predictions if len(dataSetResults) == 1: # only a single dataset? Easy case. expResults = dataSetResults[0] else: if combinedResults: # Include combination combinedRes = _getCombinedResultFor(dataSetResults, expResult) if combinedRes is not None: dataSetResults.append(TheoryPredictionList([combinedRes])) if not useBestDataset: # Report all datasets expResults = sum(dataSetResults) else: expResults = TheoryPredictionList() bestRes = _getBestResult(dataSetResults) if not bestRes is None: expResults.append(bestRes) # Best result = combination if available for theoPred in expResults: theoPred.expResult = expResult theoPred.deltas_rel = deltas_rel if not isinstance(theoPred.dataset,CombinedDataSet) and not theoPred.dataset.dataInfo.dataId is None and "CR" in theoPred.dataset.dataInfo.dataId: # Individual CRs shouldn't give results theoPred.upperLimit = None else: theoPred.upperLimit = theoPred.getUpperLimit() expResults.sortTheoryPredictions() for theoPred in expResults: ret.append(theoPred) tpList = TheoryPredictionList(ret) tpList.sortTheoryPredictions() return tpList
def _getCombinedResultFor(dataSetResults, expResult): """ Compute the combined result for all datasets, if covariance matrices are available. Return a TheoryPrediction object with the signal cross-section summed over all the signal regions and the respective upper limit. :param datasetPredictions: List of TheoryPrediction objects for each signal region :param expResult: ExpResult object corresponding to the experimental result :return: TheoryPrediction object """ if all([True if "CR" in predList[0].dataset.dataInfo.dataId else False for predList in dataSetResults]): # Don't give combined result if all regions are CRs return None if len(dataSetResults) == 1: return dataSetResults[0] elif not expResult.hasCovarianceMatrix() and not expResult.hasJsonFile(): return None txnameList = [] smsList = [] totalXsec = None datasetPredictions = [] avgSMSlist = [] for predList in dataSetResults: if len(predList) != 1: raise SModelSError("Results with multiple datasets should have a single theory prediction (EM-type)!") pred = predList[0] datasetPredictions.append(pred) txnameList += pred.txnames smsList += pred.smsList avgSMSlist.append(pred.avgSMS) if totalXsec is None: totalXsec = pred.xsection else: totalXsec += pred.xsection txnameList = list(set(txnameList)) # Check if all avgSMS are the same: uniqueSMS = all(avgSMSlist[0] == avgSMS for avgSMS in avgSMSlist[1:]) # If so, keep it in the theoryPrediction, otherwise set to None if uniqueSMS: avgSMS = avgSMSlist[0] else: avgSMS = None # Create a combinedDataSet object: combinedDataset = CombinedDataSet(expResult) # Create a theory preidction object for the combined datasets: theoryPrediction = TheoryPrediction() theoryPrediction.dataset = combinedDataset theoryPrediction.txnames = txnameList theoryPrediction.avgSMS = avgSMS theoryPrediction.xsection = totalXsec theoryPrediction.datasetPredictions = datasetPredictions theoryPrediction.conditions = None theoryPrediction.smsList = smsList return theoryPrediction def _getBestResult(dataSetResults): """ Returns the best result according to the expected upper limit. If a combined result is included in the list, always return it. :param datasetPredictions: list of TheoryPredictionList objects :return: best result (TheoryPrediction object) """ # In the case of UL analyses or efficiency-maps with a single signal region # return the single result: if len(dataSetResults) == 1: return dataSetResults[0] # If combination is included, always return it for predList in dataSetResults: for tp in predList: if isinstance(tp.dataset,CombinedDataSet): return tp # For efficiency-map analyses with multipler signal regions, # select the best one according to the expected upper limit: bestExpectedR = 0.0 bestXsec = 0.0*fb bestPred = None for predList in dataSetResults: if len(predList) != 1: logger.error("Multiple clusters should only exist for upper limit results!") raise SModelSError() dataset = predList[0].dataset if "CR" in dataset.dataInfo.dataId: # A CR cannot be the best SR continue if dataset.getType() != "efficiencyMap": txt = ( "Multiple data sets should only exist for efficiency map results, but we have them for %s?" % (predList[0].analysisId()) ) logger.error(txt) raise SModelSError(txt) pred = predList[0] xsec = pred.xsection expectedR = (xsec/dataset.getSRUpperLimit(expected=True)).asNumber() if expectedR > bestExpectedR or (expectedR == bestExpectedR and xsec > bestXsec): bestExpectedR = expectedR bestPred = pred bestXsec = xsec return bestPred def _getDataSetPredictions(dataset, smsMatch,smsDict, maxMassDist, deltas_rel=None): """ Compute theory predictions for a given data set. For upper-limit results returns the list of theory predictions for the experimental result. For efficiency-map results returns the list of theory predictions for the signal region. Uses the list of SMS in smsTopDict. For each Txname appearing in dataset, it collects the SMS and efficiencies, combine the masses (if needed) and compute the conditions (if existing). :parameter dataset: Data Set to be considered (DataSet object) :parameter smsTopDict: dictionary of SMS, where the canonical names are keys and the TheorySMS objects are values. (TopologyDict object) :parameter maxMassDist: maximum mass distance for clustering SMS (float) :returns: a TheoryPredictionList object containing a list of TheoryPrediction objects """ if deltas_rel is None: from smodels.base.runtime import _deltas_rel_default deltas_rel = _deltas_rel_default predictionList = TheoryPredictionList() # Select SMS belonging to expResult and apply efficiencies smsList = _getSMSFor(dataset,smsMatch,smsDict) if len(smsList) == 0: return None # Check dataset sqrts format: if (dataset.globalInfo.sqrts/TeV).normalize()._unit: ID = dataset.globalInfo.id logger.error("Sqrt(s) defined with wrong units for %s" % (ID)) return False # Compute relevant SMS weights newList = [] for sms in smsList: # Get cross-sections for correct CM energy: sms.weight = sms.weightList.getXsecsFor(dataset.globalInfo.sqrts) if not sms.weight: continue # Get largest weight (in case there are LO, NLO,... values) sms.weight = sms.weight.getMaxXsec() # Multiply weight by SMSs efficiency: sms.weight = sms.weight*sms.eff newList.append(sms) smsList = newList[:] # Combine SMS according to their respective constraints and masses # (For efficiencyMap analysis group all SMS) clusters = _combineSMS(smsList, dataset, maxDist=maxMassDist) # Collect results and evaluate conditions for cluster in clusters: theoryPrediction = TheoryPrediction(deltas_rel) theoryPrediction.dataset = dataset theoryPrediction.txnames = cluster.txnames theoryPrediction.smsList = cluster.smsList theoryPrediction.avgSMS = cluster.averageSMS # Compute relevant cross-section and conditions: theoryPrediction.computeXSection() # Skip results with too small (invisible) cross-sections if theoryPrediction.xsection < 1e-6*fb: continue theoryPrediction.computeConditions() predictionList._theoryPredictions.append(theoryPrediction) if len(predictionList) == 0: return None else: return predictionList def _getSMSFor(dataset,smsMatch,smsDict): """ Get SMS that belong to any of the TxNames in dataset (appear in any of constraints in the result). :parameter dataset: Data Set to be considered (DataSet object) :parameter smsMatch: dictionary with unique ExpSMS as keys and the corresponding list of (matched TheorySMS, orignal TheorySMS) as values :returns: list of SMS (TheorySMS objects) """ smsList = [] for txname in dataset.txnameList: # Loop over unique SMS for the given txname: for smsLabel,txsms in smsDict[txname].items(): for sms,sms_orig in smsMatch[txsms]: # Tag the original SMS as covered: sms_orig.setCoveredBy(dataset.globalInfo.type) newSMS = sms.copy() newSMS = smsDict.setTxNodeOrdering(newSMS,txname,smsLabel) # Compute efficiency eff = txname.getEfficiencyFor(newSMS) if eff is None or abs(eff) < 1e-14: continue # Tag the original SMS as tested: sms_orig.setTestedBy(dataset.globalInfo.type) newSMS.eff = eff newSMS.txname = txname newSMS.txlabel = smsLabel smsList.append(newSMS) return smsList def _combineSMS(smsList, dataset, maxDist): """ Combine SMS according to the data set type. If expResult == upper limit type, first group SMS with different TxNames and then into mass clusters. If expResult == efficiency map type, group all SMS into a single cluster. :parameter smsList: list of SMS (TheorySMS objects) :parameter expResult: Data Set to be considered (DataSet object) :returns: list of SMS clusters (SMSCluster objects) """ clusters = [] if dataset.getType() == "efficiencyMap": # cluster all SMS clusters += clusterTools.clusterSMS(smsList, maxDist, dataset) elif dataset.getType() == "upperLimit": # Cluster each txname individually txnames = list(set([sms.txname for sms in smsList])) for txname in txnames: txnameSMS = [sms for sms in smsList if sms.txname is txname] clusters += clusterTools.clusterSMS(txnameSMS, maxDist, dataset) else: logger.warning("Unkown data type: %s. Data will be ignored." % dataset.getType()) return clusters