

SModelS User Manual

These pages constitute the SModelS manual.

SModelS is an automatic, public tool for interpreting simplified-model results from the LHC.
It is based on a general procedure to decompose Beyond the Standard Model
(BSM) collider signatures presenting a Z2 symmetry into Simplified Model
Spectrum (SMS) topologies. Our method provides a way to cast BSM predictions
for the LHC in a model independent framework, which can be directly confronted
with the relevant experimental constraints. Our concrete implementation
currently focusses on supersymmetry searches with missing energy, for which a
large variety of SMS results from ATLAS and CMS are available. The main
ingredients are

	the decomposition of the BSM spectrum into SMS topologies

	a database of experimental SMS results

	the interface between decomposition and results database (to check limits)

as illustrated in the graphics below.

[image: _images/smodelsScheme.png]

Contents

	What’s New

	Installation and Deployment

	Using SModelS

	SModelS Tools

	Detailed Guide to SModelS

	How To’s

	SModelS Code Documentation

	C++ Interface

Indices and tables

	Index

	Search Page

What’s New

The major novelties of all releases since v1.0 are as follows:

New in Version 1.2.4:

	added pyhf [https://scikit-hep.org/pyhf/] support

	pickle path bug fix

	bug fix for parallel xseccomputers

	Introduced the SMODELS_CACHEDIR environment variable to allow for a different
location of the cached database file

	fixed dataId bug in datasets

New in Version 1.2.3:

	database updated with results from more than 20 new analyses

	server for databases is now smodels.github.io, not smodels.hephy.at

	small bug fix for displaced topologies

	small fix in slha printer, r_expected was r_observed

	Downloaded database files now stored in $HOME/.cache/smodels

New in Version 1.2.2:

	Updated official database, added T3GQ eff maps and a few ATLAS 13 TeV results, see github database release page [https://github.com/SModelS/smodels-database-release/releases]

	Database “official” now refers to a database without fastlim results, “official_fastlim”, to the official database with fastlim

	List displaced signatures in missing topologies

	Improved description about lifetime reweighting in doc

	Fix in cluster for asymmetric masses

	Small improvements in the interactive plots tool

New in Version 1.2.1:

	Fix in particleNames.py for non-MSSM models

	Fixed the marginalize recipe

	Fixed the T2bbWWoff 44 signal regions plots in ConfrontPredictions in manual

New in Version 1.2.0:

	Decomposition and experimental results can include
non-MET BSM final states (e.g. heavy stable charged particles)

	Added lifetime reweighting at decomposition for meta-stable particles

	Added finalState property for Elements

	Introduction of inclusive simplified models

	Inclusion of HSCP and R-hadron results in the database

New in Version 1.1.3:

	Support for covariance matrices and combination of signal regions (see combineSR in parameters file)

	New plotting tool added to smodelsTools (see Interactive Plots Maker)

	Path to particles.py can now be specified in parameters.ini file (see model in parameters file)

	Wildcards allowed when selecting analyses, datasets, txnames (see analyses, txnames and dataselector in parameters file)

	Option to show individual contribution from topologies to total theory prediction (see addTxWeights in parameters file)

	URLs are allowed as database paths (see path in parameters file)

	Python default changed from python2 to python3

	Fixed lastUpdate bug, now giving correct date

	Changes in pickling (e.g. subpickling, removing redundant zeroes)

	Added fixpermissions to smodelsTools.py, for system-wide installs (see Files Permissions Fixer)

	Fixed small issue with pair production of even particles

	Moved the code documentation to the manual

	Added option for installing within the source folder

New in Version 1.1.2:

	Database update only, the code is the same as v1.1.1

New in Version 1.1.1:

	C++ Interface

	Support for pythia8 (see Cross Section Calculator)

	improved binary database

	automated SLHA and LHE file detection

	Fix and improvements for missing topologies

	Added SLHA-type output

	Small improvements in interpolation and clustering

New in Version 1.1.0:

	the inclusion of efficiency maps (see EM-type results)

	a new and more flexible database format (see Database structure)

	inclusion of likelihood and \(\chi^2\) calculation for EM-type results
(see likelihood calculation)

	extended information on the topology coverage

	inclusion of a database broswer tool for easy access to the information
stored in the database (see database browser)

	the database now supports also a more efficient binary format

	performance improvement for the decomposition of the input model

	inclusion of new simplified results to the database (including a few 13 TeV results)

	Fastlim efficiency maps can now also be used in SModelS

Installation and Deployment

Standard Installation

SModelS is a Python library that requires Python version 2.6 or later, including version 3, which is the default. It depends on the following external Python libraries:

	unum>=4.0.0

	numpy>=1.13.0

	argparse

	requests>=2.0.0

	docutils>=0.3

	scipy>=1.0.0

	pyslha>=3.1.0

	pyhf>=0.4.3 (>=0.5.2 recommended!)

	jsonpatch>=1.26

	jsonschema>=3.2.0

	torch>=1.6.0

In addition, the cross section computer provided by smodelsTools.py
requires:

	Pythia 8.2 [https://arxiv.org/abs/1410.3012] (requires a C++ compiler) or Pythia 6.4.27 [http://arxiv.org/abs/hep-ph/0603175] (requires gfortran)

	NLL-fast [http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast] 1.2 (7 TeV), 2.1 (8 TeV), and 3.1 (13 TeV) (requires a fortran compiler)

These tools need not be installed separately, as the SModelS build system takes care of that. The current default is that both Pythia6 and Pythia8 are installed together with NLLfast.
Finally, the database browser provided by smodelsTools.py
requires IPython [https://ipython.org/], while the interactive plotter requires plotly [https://plot.ly/python/] and pandas [https://pandas.pydata.org/].

Installation Methods

	The first installation method installs SModelS in the source directory.
After downloading the source from the SModelS releases page [https://github.com/SModelS/smodels/releases]
and extracting it, run:

make smodels

in the top-level directory. The installation will remove redundant folders, install the required
dependencies (using pip install) and compile Pythia and NLL-fast.
If the cross section computer is not needed, one can replace smodels with smodels_noexternaltools in the above command.
In case the Python libraries can not be successfully
installed, the user can install them separately using his/her preferred method. Pythia and NLL-fast can also be compiled separately
running make externaltools.

	If Python’s setuptools is installed in your machine, SModelS and its dependencies
can also be installed without the use of pip.
After downloading the source from the SModelS releases page [https://github.com/SModelS/smodels/releases]
and extracting it, run:

setup.py install

within the main smodels directory. If the python libraries are installed in a system folder (as is the default behavior),
it will be necessary to run the install command with superuser privilege.
Alternatively, one can run setup.py with the “–user” flag:

setup.py install --user

If setuptools is not installed, you can try to install the external libraries
manually and then rerun setup.py.
For Ubuntu, SL6 machines and other platforms, a recipe is given below.

Note that this installation method will install smodels into the default system or user directory (e.g. ~/.local/lib/python3/site-packages/).
Depending on your platform, the environment variables $PATH, $PYTHONPATH, $LD_LIBRARY_PATH
(or $DYLD_LIBRARY_PATH) might have to be set appropriately.

	Finally, if pip3 (or pip) is installed in your machine, it is also possible to install SModelS directly without the need for
downloading the source code:

pip3 install smodels

in case of system-wide installs or :

pip3 install --user smodels

for user-specific installations.

Note that this installation method will install smodels into the default system or user directory (e.g. ~/.local/lib/python3/site-packages/).
Depending on your platform, the environment variables $PATH, $PYTHONPATH, $LD_LIBRARY_PATH
(or $DYLD_LIBRARY_PATH) might have to be set appropriately.
Be aware that the example files and the parameters file discussed in the manual
will also be located in your default system or user directory. Furthermore the database
folder is not included (see database installation below).

There is also a diagnostic tool available:

smodelsTools.py toolbox

should list and check all internal tools (Pythia and NLL-fast) and external
(numpy, scipy, unum, …) dependencies.

In case everything fails, please contact smodels-users@lists.oeaw.ac.at

Installing the SModelS Database

The installation methods explained above (except for pip install) also install SModelS’
database of experimental results
in the smodels-database subdirectory.
The first time SModelS is run, a binary file will be built
using this text database folder, which can then be used in all subsequent runs.
However, from v1.1.3 onwards it is recommended to provide the URL of the official database as the
database path when running SModelS (see path in parameters file).
In this case the corresponding database version binary file will be automatically downloaded
and used. The available database URLs can be found in
the SModelS Database releases page [https://github.com/SModelS/smodels-database-release/releases] .

The complete list of analyses and results included in the database can be
consulted at https://smodels.github.io/wiki/ListOfAnalyses.
We note that all the results in the official database release have been
carefully validated and the validation material can be
found at https://smodels.github.io/wiki/Validation.

The database can conveniently be updated independently from SModelS code
updates. It suffices to unpack any new database tarball and replace the database
directory or provide the path
to the new folder, binary or URL address.
In the same fashion, one can easily add additional results as
explained below.

Adding FastLim data

The official SModelS database can be augmented with data from the
fastlim [http://cern.ch/fastlim] results.
For using SModelS with the text database,
a tarball with the properly converted fastlim-1.0 efficiency maps can be found in
the smodels-database folder.
The tarball then needs to be exploded in the top level directory of the database:

cd <smodels-database folder>
tar -xzvf smodels-v1.1-fastlim-1.0.tgz
rm smodels-v1.1-fastlim-1.0.tgz

Once the fastlim folders have been added to the database,
SModelS auto-detects fastlim results and issues an acknowledgement.

As discussed above, from v1.1.3 onwards it is also possible to
directly download the database binary file using the URLs
provided in the SModelS Database releases page [https://github.com/SModelS/smodels-database-release/releases] .
Separate URLs are provided for the database including the Fastlim maps, so the user
can choose which database to use.

When using the Fastlim results, please properly cite the fastlim paper; for
convenience, a bibtex file is provided in the smodels-fastlim tarball.

Finally we point out that when converting the Fastlim efficiency maps
efficiencies with a relative statistical uncertainty greater than 25%
were set to zero. Also, per default we discard zeroes-only results.

Adding one’s own results

The Database of Experimental Results is
organized as files in an ordinary directory hierarchy. Therefore,
adding additional experimental results is a matter of copying and editing text
files.
Once the new folders and files have been added following the
database structure format, SModelS
automatically rebuilds the binary (Pickle) database file.
The added results will then be available for using with the
the SModelS tools.

System-specific Installation Instructions

Installation on Ubuntu >= 16.04

Installation on Ubuntu machines should be straightforward with superuser privileges
(if you do not have superuser privileges see instructions below):

	sudo apt install gfortran python-setuptools python-scipy python-numpy python-docutils python-argparse

	setup.py install

Note that the last command can be run as superuser, or with the “–user” flag.

Installation on SL7

Installation on an SL7 or CentOS7 is straightforward:

	yum install gcc-c++ scipy numpy

	pip install unum pyslha argparse

Installation on SL6

Installation on an SL6 (Scientific Linux 6 or Scientific Linux CERN 6) machine
is tricky, because SModelS requires a more recent version of scipy than is provided by SL6.
We succeeded to install SModelS on SL6 by doing:

	yum install gcc-c++ libstdc++-devel libevent-devel python-devel lapack lapack-devel blas blas-devel libgfortran python-distutils-extra

followed by:

	pip install nose unum argparse numpy pyslha scipy

Note, that these steps can safely be done within a Python virtualenv.
Pip can also be called with the “–user” flag.

Installation on SL5 and similar distributions

In some distributions like SL5, the Python default version may be smaller than
2.6. In these cases, virtualenv has to be set up for a Python version >= 2.6. E.g. for Python 2.6, do virtualenv --python=python2.6 <envname>, and modify by hand the first line in the executable from #!/usr/bin/env python3
to #!/usr/bin/env python2.6.
Then perform the steps listed under Installation on SL6.

Installation on other platforms or without superuser privileges using Anaconda

Another easy and platform independent way of installing SModelS
without superuser priviledges is via Anaconda (https://www.continuum.io/downloads).
Anaconda provides a local installation of pip as well as several additional python packages.
Here we assume a version of gfortran is already installed in your system.

	download and install Anaconda for Python 3.6 (https://www.continuum.io/downloads)

	make sure Anaconda’s bin and lib folders are added to your system and Python paths

PATH="<anaconda-folder>/bin:$PATH"
PYTHONPATH=$PYTHONPATH:"<anaconda-folder>/lib/python3.6/site-packages"

and then install SModelS as a user:

setup.py install --user

In order to make sure all libraries have been correctly installed, you can run:

smodelsTools.py toolBox

Installation of the C++ interface

SModelS v1.1.1 comes with a simple C++ interface, see the cpp directory.
Obviously, a C++ compiler is need, alongside with the python developers
(header) files (libpython-dev on ubuntu, python-devel on rpm-based distros).

Using SModelS

SModelS can take SLHA or LHE files as input (see Basic Input).
It ships with a command-line tool runSModelS.py, which reports
on the SMS decomposition and theory predictions in several output formats.

For users more familiar with Python and the SModelS basics, an example
code Example.py is provided showing how to access
the main SModelS functionalities: decomposition, the database
and computation of theory predictions.

The command-line tool (runSModelS.py) and the example Python
code (Example.py) are described below.

Note

For non-MSSM (incl. non-SUSY) input models the user needs to write their own model.py
file and specify which BSM particles are even or odd under the assumed
Z2 symmetry (see adding new particles).
From version 1.2.0 onwards it is also necessary to define the BSM particle quantum numbers in the same file 1.

runSModelS.py

runSModelS.py covers several different applications of the SModelS functionality,
with the option of turning various features on or off, as well as
setting the basic parameters.
These functionalities include detailed checks of input SLHA files,
running the decomposition,
evaluating the theory predictions and comparing them to the experimental
limits available in the database,
determining missing topologies and printing the output
in several available formats.

Starting on v1.1, runSModelS.py is equipped with two additional
functionalities. First, it can process a folder containing a set of SLHA or LHE
file, second, it supports parallelization of this input folder.

The usage of runSModelS is:

runSModelS.py [-h] -f FILENAME [-p PARAMETERFILE] [-o OUTPUTDIR] [-d] [-t] [-C] [-V] [-c] [-v VERBOSE] [-T TIMEOUT]

	arguments:

	
	-h, --help

	show this help message and exit

	-f FILENAME, --filename FILENAME

	name of SLHA or LHE input file or a directory path (required argument). If a directory is given, loop over all files in the directory

	-p PARAMETERFILE, --parameterFile PARAMETERFILE

	name of parameter file, where most options are defined (optional argument). If not set, use all parameters from smodels/etc/parameters_default.ini

	-o OUTPUTDIR, --outputDir OUTPUTDIR

	name of output directory (optional argument). The default folder is: ./results/

	-d, --development

	if set, SModelS will run in development mode and exit
if any errors are found.

	-t, --force_txt

	force loading the text database

	-C, --colors

	colored output

	-V, --version

	show program’s version number and exit

	-c, --run-crashreport

	parse crash report file and use its contents for a SModelS run. Supply the crash file simply via ‘– filename myfile.crash’

	-v VERBOSE, --verbose VERBOSE

	sets the verbosity level (debug, info, warning, error). Default value is info.

	-T TIMEOUT, --timeout TIMEOUT

	define a limit on the running time (in secs).If not set, run without a time limit. If a directory is given as input, the timeout will be applied for each individual file.

A typical usage example is:

runSModelS.py -f inputFiles/slha/simplyGluino.slha -p parameters.ini -o ./ -v warning

The resulting output will be generated in the current folder, according to the printer options set in the
parameters file.

The Parameters File

The basic options and parameters used by runSModelS.py are defined in the parameters file.
An example parameter file, including all available parameters together
with a short description, is stored in parameters.ini.
If no parameter file is specified, the default parameters stored in
smodels/etc/parameters_default.ini are used.
Below we give more detailed information about each entry in the parameters file.

	options: main options for turning SModelS features on or off

	checkInput (True/False): if True, runSModelS.py will run the file check tool on the input file and verify if the input contains all the necessary information.

	doInvisible (True/False): turns invisible compression on or off during the decomposition.

	doCompress (True/False): turns mass compression on or off during the decomposition.

	computeStatistics (True/False): turns the likelihood and \(\chi^2\) computation on or off
(see likelihood calculation).
If True, the likelihood and \(\chi^2\) values are computed for the EM-type results.

	testCoverage (True/False): set to True to run the coverage tool.

	combineSRs (True/False): set to True to use, whenever available, covariance matrices or full likelihoods to combine signal regions. NB this might take a few secs per point. Set to False to use only the most sensitive signal region (faster!). Available v1.1.3 onwards for covariance matrices and v1.2.4 onwards for full likelihoods (using pyhf [https://scikit-hep.org/pyhf/]).

	particles: defines the particle content of the BSM model

	model: pathname to the Python file that defines the particle content of the BSM model, given either in Unix file notation (“/path/to/model.py”) or as Python module path (“path.to.model”). Defaults to share.models.mssm which is a standard MSSM. See smodels/share/models folder for more examples. Directory name can be omitted; in that case, the current working directory as well as smodels/share/models are searched for.

	parameters: basic parameter values for running SModelS

	sigmacut (float): minimum value for an element weight (in fb). Elements
with a weight below sigmacut are neglected during the decomposition
of SLHA files (see Minimum Decomposition Weight).
The default value is 0.03 fb. Note that, depending on the input model, the running time may increase considerably if sigmacut is too low, while too large values might eliminate relevant elements.

	minmassgap (float): maximum value of the mass difference (in GeV) for
perfoming mass compression. Only used if doCompress = True

	maxcond (float): maximum allowed value (in the [0,1] interval) for the violation of upper limit conditions. A zero value means the conditions are strictly enforced, while 1 means the conditions are never enforced.
Only relevant for printing the output summary.

	ncpus (int): number of CPUs. When processing multiple SLHA/LHE files,
SModelS can run in a parallelized fashion, splitting up the input files in equal chunks.
ncpus = -1 parallelizes to as many processes as number of CPU cores of the machine. Default value is 1. Warning: python already parallelizes many tasks internally.

	database: allows for selection of a subset of experimental results from the database

	path: the absolute (or relative) path to the database. The user can supply either the directory name of the database, or the path to the pickle file. Also http addresses may be given, e.g. https://smodels.github.io/database/official113. The path “official” refers to the official database of your SModelS version – without fastlim; “official_fastlim” includes fastlim results. See the github database release page [https://github.com/SModelS/smodels-database-release/releases] for a list of public database versions.

	analyses (list of results): set to [‘all’] to use all available results. If a list of experimental analyses
is given, only these will be used. For instance, setting analyses = CMS-PAS-SUS-13-008,ATLAS-CONF-2013-024
will only use the experimental results from CMS-PAS-SUS-13-008 [https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13008]
and ATLAS-CONF-2013-024 [https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-024/].
Wildcards (, ?, [<list-of-or’ed-letters>]) are expanded in the same way the shell does wildcard expansion for file names.
So analyses = CMS leads to evaluation of results from the CMS-experiment only, for example. SUS selects everything containining SUS, no matter if from CMS or ATLAS.
Furthermore selection of analyses can be confined on their centre-of-mass energy with a suffix beginning with a colon and an energy string in unum-style, like :13*TeV. Note that the asterisk behind the colon is not a wildcard. :13, :13TeV and :13 TeV are also understood but discouraged.

	txnames (list of topologies): set to [‘all’] to use all available simplified model topologies. The topologies are labeled according to the txname convention.
If a list of txnames are given, only the corresponding topologies will be considered. For instance, setting txnames = T2 will
only consider experimental results for \(pp \to \tilde{q} + \tilde{q} \to (jet+\tilde{\chi}_1^0) + (jet+\tilde{\chi}_1^0)\)
and the output will only contain constraints for this topology.
A list of all topologies and their corresponding txnames can be found here [https://smodels.github.io/wiki/SmsDictionary]
Wildcards (*, ?, [<list-of-or’ed-letters>]) are expanded in the same way the shell does wildcard expansion for file names.
So, for example, txnames = T[12]*bb* picks all txnames beginning with T1 or T2 and containg bb as of the time of writing were: T1bbbb, T1bbbt, T1bbqq, T1bbtt, T2bb, T2bbWW, T2bbWWoff

	dataselector (list of datasets): set to [‘all’] to use all available data sets. If dataselector = upperLimit (efficiencyMap), only UL-type results (EM-type results) will be used. Furthermore, if
a list of signal regions (data sets) is given, only the experimental results containing these datasets will be used. For instance, if dataselector = SRA mCT150,SRA mCT200, only
these signal regions will be used.
Wildcards (*, ?, [<list-of-or’ed-letters>]) are expanded in the same way the shell does wildcard expansion for file names. Wildcard examples are given above.

	dataTypes dataType of the analysis (all, efficiencyMap or upperLimit). Can be wildcarded with usual shell wildcards: * ? [<list-of-or’ed-letters>]. Wildcard examples are given above.

	printer: main options for the output format

	outputType (list of outputs): use to list all the output formats to be generated.
Available output formats are: summary, stdout, log, python, xml, slha.

	stdout-printer: options for the stdout or log printer

	printDatabase (True/False): set to True to print the list of selected experimental results to stdout.

	addAnaInfo (True/False): set to True to include detailed information about the txnames tested by each experimental result. Only used if printDatabase=True.

	printDecomp (True/False): set to True to print basic information from the decomposition (topologies, total weights, …).

	addElementInfo (True/False): set to True to include detailed information about the elements generated by the decomposition. Only used if printDecomp=True.

	printExtendedResults (True/False): set to True to print extended information about the theory predictions, including the PIDs of the particles
contributing to the predicted cross section, their masses and the expected upper limit (if available).

	addCoverageID (True/False): set to True to print the list of element IDs contributing to each missing topology (see coverage).
Only used if testCoverage = True. This option should be used along with addElementInfo = True so the user can precisely identify
which elements were classified as missing.

	summary-printer: options for the summary printer

	expandedSummary (True/False): set True to include in the summary output all applicable experimental results, False for only the strongest one.

	python-printer: options for the Python printer

	addElementList (True/False): set True to include in the Python output all information about all elements generated in the decomposition. If set to True the
output file can be quite large.

	addTxWeights (True/False): set True to print the contribution from individual topologies to each theory prediction. Available v1.1.3 onwards.

	xml-printer: options for the xml printer

	addElementList (True/False): set True to include in the xml output all information about all elements generated in the decomposition. If set to True the
output file can be quite large.

	addTxWeights (True/False): set True to print the contribution from individual topologies to each theory prediction. Available v1.1.3 onwards.

The Output

The results of runSModelS.py are printed to the format(s) specified by the outputType in the parameters file.
The following formats are available:

	a human-readable screen output (stdout) or log output. These are intended to
provide detailed information about the database, the decomposition, the
theory predictions and the missing topologies. The
output complexity can be controlled through several options in the parameters file. Due to its size, this output
is not suitable for storing the results from a large scan, being more appropriate for a single file input.

	a human-readable text file output containing a summary of the output. This format
contains the main SModelS results: the theory predictions and the missing topologies.
It can be used for a large scan, since the output can be made quite compact, using the options in the parameters file.

	a python dictionary printed to a file containing information about the decomposition, the
theory predictions and the missing topologies. The output can be significantly long, if
all options in the parameters file are set to True. However this output can be easily imported to a Python enviroment, making it
easy to access the desired information. For users familiar with the Python language this is the recommended
format.

	a xml file containing information about the decomposition, the
theory predictions and the missing topologies. The output can be significantly long, if
all options are set to True. Due to its broad usage, the xml output can be easily converted to the
user’s preferred format.

	a SLHA file containing information about the
theory predictions and the missing topologies. The output follows a SLHA-type
format and contains a summary of the most constraining results and the missed topologies.

A detailed explanation of the information contained in each type of output is given
in SModels Output.

Example.py

Although runSModelS.py provides the main SModelS features with a command line interface,
users more familiar with Python and the SModelS language may prefer to write their own main program.
A simple example code for this purpose is provided in examples/Example.py.
Below we go step-by-step through this example code:

	Import the SModelS modules and methods. If the example code file is not located in
the smodels installation folder, simply add “sys.path.append(<smodels installation path>)” before importing smodels. Set SModelS verbosity level.

from smodels import particlesLoader
from smodels.theory import slhaDecomposer,lheDecomposer
from smodels.tools.physicsUnits import fb, GeV, TeV
from smodels.theory.theoryPrediction import theoryPredictionsFor
from smodels.experiment.databaseObj import Database
from smodels.tools import coverage
from smodels.tools.smodelsLogging import setLogLevel
setLogLevel("info")

	Set the path to the database URL. Specify which database to use. It can be the path
to the smodels-database folder, the path to a pickle file or (starting with v1.1.3) a URL path.

Set the path to the database
database = Database("official")

	Define the input model. By default SModelS assumes the MSSM particle content. For using SModelS
with a different particle content, the user must define the new particle content and set modelFile
to the path of the model file (see particles:model in Parameter File).

 #Define your model (list of rEven and rOdd particles)
 particlesLoader.load('smodels.share.models.mssm') #Make sure all the model particles are up-to-date

	Path to the input file. Specify the location of the input file. It must be a
SLHA or LHE file (see Basic Input).

 slhafile = 'inputFiles/slha/lightEWinos.slha'
 lhefile = 'inputFiles/lhe/gluino_squarks.lhe'

	Set main options for decomposition.
Specify the values of sigmacut and minmassgap:

 sigmacut = 0.01 * fb
 mingap = 5. * GeV

	Decompose model. Depending on the type
of input format, choose either
the slhaDecomposer.decompose or
lheDecomposer.decompose method. The doCompress and doInvisible options turn the mass compression and invisible compression on/off.

 # Decompose model (use slhaDecomposer for SLHA input or lheDecomposer for LHE input)
 slhaInput = True
 if slhaInput:
 toplist = slhaDecomposer.decompose(slhafile, sigmacut, doCompress=True, doInvisible=True, minmassgap=mingap)
 else:
 toplist = lheDecomposer.decompose(lhefile, doCompress=True,doInvisible=True, minmassgap=mingap)

	Access basic information from decomposition, using the
topology list
and topology objects:

 # Access basic information from decomposition, using the topology list and topology objects:
 print("\n Decomposition Results: ")
 print("\t Total number of topologies: %i " %len(toplist))
 nel = sum([len(top.elementList) for top in toplist])
 print("\t Total number of elements = %i " %nel)
 #Print information about the m-th topology (if it exists):
 m = 2
 if len(toplist) > m:
 top = toplist[m]
 print("\t\t %i-th topology = " %m,top,"with total cross section =",top.getTotalWeight())
 #Print information about the n-th element in the m-th topology:
 n = 0
 el = top.elementList[n]
 print("\t\t %i-th element from %i-th topology = " %(n,m),el, end="")
 print("\n\t\t\twith final states =",el.getFinalStates(),"\n\t\t\twith cross section =",el.weight,"\n\t\t\tand masses = ",el.getMasses())

output:

 Decomposition Results:
	 Total number of topologies: 51
	 Total number of elements = 14985
		 2-th topology = [][2] with total cross section = ['8.00E+00 [TeV]:3.05E-01 [pb]', '1.30E+01 [TeV]:5.21E-01 [pb]']
		 0-th element from 2-th topology = [[],[[b,b]]]
			with final states = ['MET', 'MET']
			with cross section = ['8.00E+00 [TeV]:2.44E-04 [pb]', '1.30E+01 [TeV]:1.17E-03 [pb]']
			and masses = [[6.81E+01 [GeV]], [1.35E+02 [GeV], 6.81E+01 [GeV]]]

	Load the experimental results to be used to constrain the input model.
Here, all results are used:

 listOfExpRes = database.getExpResults()

Alternatively, the getExpResults method
can take as arguments specific results to be loaded.

	Print basic information about the results loaded.
Below we show how to count the number of UL-type results and EM-type results loaded:

 nUL, nEM = 0, 0
 for exp in listOfExpRes:
 expType = exp.getValuesFor('dataType')[0]
 if expType == 'upperLimit':
 nUL += 1
 elif expType == 'efficiencyMap':
 nEM += 1
 print("\n Loaded Database with %i UL results and %i EM results " %(nUL,nEM))

output:

 Loaded Database with 81 UL results and 38 EM results

	Compute the theory predictions for each experimental result.
The output is a list of
theory prediction objects
(for each experimental result):

 for expResult in listOfExpRes:
 predictions = theoryPredictionsFor(expResult, toplist, combinedResults=False, marginalize=False)

	Print the results. For each experimental result, loop over the corresponding theory predictions
and print the relevant information:

 for theoryPrediction in predictions:
 dataset = theoryPrediction.dataset
 datasetID = dataset.dataInfo.dataId
 mass = theoryPrediction.mass
 txnames = [str(txname) for txname in theoryPrediction.txnames]
 PIDs = theoryPrediction.PIDs
 print("------------------------")
 print("Dataset = ",datasetID) #Analysis name
 print("TxNames = ",txnames)
 print("Prediction Mass = ",mass) #Value for average cluster mass (average mass of the elements in cluster)
 print("Prediction PIDs = ",PIDs) #Value for average cluster mass (average mass of the elements in cluster)
 print("Theory Prediction = ",theoryPrediction.xsection) #Signal cross section
 print("Condition Violation = ",theoryPrediction.conditions) #Condition violation values

output:

 ATLAS-SUSY-2015-06

Dataset = SR5j
TxNames = ['T1', 'T2']
Prediction Mass = [[5.77E+02 [GeV], 6.81E+01 [GeV]], [5.77E+02 [GeV], 6.81E+01 [GeV]]]
Prediction PIDs = [[[1000021, 1000022], [1000021, 1000022]]]
Theory Prediction = 1.30E+01 [TeV]:5.28E-06 [pb]
Condition Violation = {'None': None}

	Get the corresponding upper limit. This value can
be compared to the theory prediction to decide whether a model is excluded or not:

 print("UL for theory prediction = ",theoryPrediction.upperLimit)

output:

UL for theory prediction = 1.79E+00 [fb]

	Print the r-value, i.e. the ratio theory prediction/upper limit.
A value of \(r \geq 1\) means that an experimental result excludes the input model.
For EM-type results also compute the \(\chi^2\) and likelihood.
Also check if the condition values are met.
Determine the most constraining result:

 print("r = ",r)

 # Compute likelihhod and chi^2 for EM-type results:
 if dataset.dataInfo.dataType == 'efficiencyMap':
 theoryPrediction.computeStatistics()
 print('Chi2, likelihood=', theoryPrediction.chi2, theoryPrediction.likelihood)

 # Check condition violation
 exceedsMaxCond = False
 CondViolation = theoryPrediction.getmaxCondition()
 if CondViolation == 'N/A' or CondViolation == None:
 print("no condition violation")
 elif CondViolation <= maxcond:
 print("Condition violation = ", CondViolation, " (OK)")
 else:
 print("Condition violation ", CondViolation, " exceeds chosen bound of ", maxcond)
 exceedsMaxCond=True

 # determine rmax
 if r > rmax and exceedsMaxCond == False:
 rmax = r
 bestResult = expResult.globalInfo.id

output:

r = 0.0029506296753791803
Chi2, likelihood= 2.377901422385566 0.007168380743561493
Condition violation = 0.0 (OK)

	Print the most constraining experimental result. Using the largest r-value,
determine if the model has been excluded or not by the selected experimental results:

 # Print the most constraining experimental result
 print("\nThe largest r-value (theory/upper limit ratio) is ",rmax)
 if rmax > 1.:
 print("(The input model is likely excluded by %s)" %bestResult)
 else:
 print("(The input model is not excluded by the simplified model results)")

output:

The largest r-value (theory/upper limit ratio) is 1.2039296443268397
(The input model is likely excluded by CMS-SUS-13-006)

	Identify missing topologies. Using the output from decomposition, identify
the missing topologies and print some basic information:

 #Find out missing topologies for sqrts=13*TeV:
 uncovered = coverage.Uncovered(toplist,sqrts=13.*TeV)
 #Print uncovered cross-sections:
 print("\nTotal missing topology cross section (fb): %10.3E\n" %(uncovered.getMissingXsec()))
 print("Total cross section where we are outside the mass grid (fb): %10.3E\n" %(uncovered.getOutOfGridXsec()))
 print("Total cross section in long cascade decays (fb): %10.3E\n" %(uncovered.getLongCascadeXsec()))
 print("Total cross section in decays with asymmetric branches (fb): %10.3E\n" %(uncovered.getAsymmetricXsec()))

 #Print some of the missing topologies:
 print('Missing topologies (up to 3):')
 for topo in uncovered.missingTopos.topos[:3]:
 print('Topology:',topo.topo)
 print('Contributing elements (up to 2):')
 for el in topo.contributingElements[:2]:
 print(el,'cross-section (fb):', el.missingX)

 #Print elements with long cascade decay:
 print('\nElements outside the grid (up to 2):')
 for topo in uncovered.outsideGrid.topos[:2]:
 print('Topology:',topo.topo)
 print('Contributing elements (up to 4):')
 for el in topo.contributingElements[:4]:
 print(el,'cross-section (fb):', el.missingX)
 print('\tmass:',el.getMasses())

output:

Total missing topology cross section (fb): 1.408E+04

Total cross section where we are outside the mass grid (fb): 9.481E+02

Total cross section in long cascade decays (fb): 5.969E+03

Total cross section in decays with asymmetric branches (fb): 7.943E+03

Missing topologies (up to 3):
Topology: [[],[]](MET,MET)
Contributing elements (up to 2):
[[],[]] cross-section (fb): 3.8832839999999997
[[],[]] cross-section (fb): 0.557261132427282
Topology: [[],[[W]]](MET,MET)
Contributing elements (up to 2):
[[],[[W+]]] cross-section (fb): 0.32675012450355956
[[],[[W+]]] cross-section (fb): 0.15158171738285436
Topology: [[],[[Z]]](MET,MET)
Contributing elements (up to 2):
[[],[[Z]]] cross-section (fb): 1.894204563779664
[[],[[Z]]] cross-section (fb): 0.17320237949111086

Elements outside the grid (up to 2):
Topology: [[[W]],[[higgs]]](MET,MET)
Contributing elements (up to 4):
[[[W+]],[[higgs]]] cross-section (fb): 0.046455022590588216
	mass: [[2.93E+02 [GeV], 6.81E+01 [GeV]], [2.92E+02 [GeV], 1.35E+02 [GeV]]]
[[[W+]],[[higgs]]] cross-section (fb): 0.062213057626625254
	mass: [[2.93E+02 [GeV], 1.35E+02 [GeV]], [2.66E+02 [GeV], 6.81E+01 [GeV]]]
[[[W+]],[[higgs]]] cross-section (fb): 0.22055328335196533
	mass: [[2.93E+02 [GeV], 1.35E+02 [GeV]], [2.92E+02 [GeV], 6.81E+01 [GeV]]]
[[[W-]],[[higgs]]] cross-section (fb): 0.06242074057131094
	mass: [[2.93E+02 [GeV], 1.35E+02 [GeV]], [2.92E+02 [GeV], 6.81E+01 [GeV]]]
Topology: [[[Z]],[[higgs]]](MET,MET)
Contributing elements (up to 4):
[[[Z]],[[higgs]]] cross-section (fb): 0.36401204399531084
	mass: [[2.66E+02 [GeV], 6.81E+01 [GeV]], [2.92E+02 [GeV], 6.81E+01 [GeV]]]
[[[Z]],[[higgs]]] cross-section (fb): 0.035568533782123934
	mass: [[2.66E+02 [GeV], 6.81E+01 [GeV]], [2.92E+02 [GeV], 1.35E+02 [GeV]]]
[[[Z]],[[higgs]]] cross-section (fb): 0.03328455299337171
	mass: [[2.66E+02 [GeV], 1.35E+02 [GeV]], [2.92E+02 [GeV], 6.81E+01 [GeV]]]
[[[Z]],[[higgs]]] cross-section (fb): 0.024739761811209363
	mass: [[2.92E+02 [GeV], 6.81E+01 [GeV]], [2.66E+02 [GeV], 6.81E+01 [GeV]]]

It is worth noting that SModelS does not include any statistical treatment for
the results, for instance, correction factors like the “look elsewhere effect”.
Due to this, the results are claimed to be “likely excluded” in the output.

	Notes:

	
	For an SLHA input file, the decays of final states
(or Z2-even particles such as the Higgs, W,…) are always ignored during
the decomposition. Furthermore, if there are two cross sections at different
calculation order (say LO and NLO) for the same process, only the highest order is used.

	The list of elements can be extremely long. Try setting addElementInfo = False
and/or printDecomp = False to obtain a smaller output.

	A comment of caution is in order regarding naively using the highest \(r\)-value
reported by SModelS, as this does not necessarily come from the most sensitive analysis.
For a rigorous statistical interpretation, one should use the \(r\)-value of
the result with the highest expected \(r\) (\(r_{exp}\)).
Unfortunately, for UL-type results, the expected limits are often not available;
\(r_{exp}\) is then reported as N/A in the SModelS output.

	1

	We note that SLHA files including decay tables and cross sections, together with the corresponding model.py, can conveniently be generated via the SModelS-micrOMEGAS interface, see arXiv:1606.03834 [http://www.arXiv.org/abs/1606.03834]

SModelS Tools

Inside SModelS there is a number of tools that may be convenient for the user:

	a cross section calculator based on Pythia8 [http://home.thep.lu.se/~torbjorn/Pythia.html] (or Pythia6 [http://pythia6.hepforge.org]) and
NLLfast [http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast],

	SLHA and LHE file checkers to check your input files for completeness and sanity,

	a database browser to provide easy access to the database of experimental results,

	a plotting tool to make interactive plots based on plotly [https://plot.ly/python/] (v1.1.3 onwards),

	a file permissions fixer to fix a problem with file permissions for the cross section computers in system-wide installs, and

	a toolbox to quickly show the state of the external tools.

Cross Section Calculator

This tool computes LHC production cross sections for MSSM particles
and writes them out in SLHA convention. This can in particular be
convenient for adding cross sections to SLHA input files, see Basic Input.
The calculation is done at LO with Pythia8 [http://home.thep.lu.se/~torbjorn/Pythia.html] or Pythia6.4 [http://pythia6.hepforge.org] ; K-factors
for colored particles are computed with NLLfast [http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast] .

The usage of the cross section calculator is:

smodelsTools.py xseccomputer [-h] [-s SQRTS [SQRTS …]] [-e NEVENTS] [-v VERBOSITY] [-c NCPUS] [-p] [-P] [-q] [-C] [-k] [-6] [-8] [-n] [-N] [-O] -f FILENAME

	arguments:

	
	-h, --help

	show this help message and exit

	-s SQRTS, --sqrts SQRTS

	sqrt(s) TeV. Can supply more than one value (as a space separated list). Default is both 8 and 13.

	-e NEVENTS, --nevents NEVENTS

	number of events to be simulated.

	-v VERBOSITY, --verbosity VERBOSITY

	Verbosity (debug, info, warning, error)

	-c NCPUS, --ncpus NCPUS

	number of cores to be used simultaneously. -1 means ‘all’.

	-p, --tofile

	write cross sections to file (only highest order)

	-P, --alltofile

	write all cross sections to file, including lower
orders

	-q, --query

	only query if there are cross sections in the file

	-C, --colors

	colored terminal output

	-k, --keep

	do not unlink temporary directory

	-6, --pythia6

	use pythia6 for LO cross sections

	-8, --pythia8

	use pythia8 for LO cross sections (default)

	-n, --NLO

	compute at the NLO level (default is LO)

	-N, --NLL

	compute at the NLO+NLL level (takes precedence over
NLO, default is LO)

	-O, --LOfromSLHA

	use LO cross sections from file to compute the NLO or
NLL cross sections

	-f FILENAME, --filename FILENAME

	SLHA file to compute cross sections for. If a directory is given, compute cross sections for all files in directory.

Further Pythia parameters are defined in smodels/etc/pythia8.cfg (for Pythia 8)
or smodels/etc/pythia.card (for Pythia 6).
.

A typical
usage example is:

smodelsTools.py xseccomputer -s 8 13 -e 10000 -p -f inputFiles/slha/higgsinoStop.slha

which will compute 8 TeV and 13 TeV LO cross sections (at the LHC) for all MSSM processes using 10k MC events.
If, after the LO cross sections have been computed, one wants to add the NLO+NLL cross sections for gluinos and squarks:

smodelsTools.py xseccomputer -s 8 13 -p -N -O -f inputFiles/slha/higgsinoStop.slha

The resulting file will then contain LO cross sections for all MSSM processes and NLO+NLL cross sections for
the available processes in NLLfast [http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast]
(gluino and squark production).
When reading the input file, SModelS will then use only the highest order cross sections available for each process.

	The cross section calculation is implemented by the computeXSec function

Input File Checks

As discussed in Basic Input,
SModelS accepts both SLHA and LHE input files. It can be convenient to perform certain sanity checks on these files as described below.

	The input file checks are implemented by the FileStatus class

LHE File Checker

For a LHE input file only very basic checks are performed, namely that

	the file exists,

	it contains at least one event,

	the information on the total cross section and the center of mass energy can be found.

The usage of the LHE checker is simply:

smodelsTools.py lhechecker [-h] -f FILENAME

	arguments:

	
	-h, --help

	show this help message and exit

	-f FILENAME, --filename FILENAME

	name of input LHE file

A typical
usage example is:

smodelsTools.py lhechecker -f inputFiles/slha/gluino_squarks.lhe

SLHA File Checker

The SLHA file checker allows to perform quite rigorous checks of SLHA input files. Concretely, it verifies that

	the file exists and is given in SLHA format,

	the file contains masses and decay branching ratios in standard SLHA format,

	the file contains cross sections according to the SLHA format for cross sections,

In addition, one can ask that

	all decays listed in the DECAY block are kinematically allowed, i.e. the sum of masses of the decay products may not exceed the mother mass. This check for “illegal decays” is turned off by default.

If any of the above tests fail (return a negative result), an error message is shown.

The usage of the SLHA checker is:

smodelsTools.py slhachecker [-h] [-xS] [-s SIGMACUT] [-illegal] [-dB] -f FILENAME

	arguments:

	
	-h, --help

	show this help message and exit

	-xS, --xsec

	turn off the check for xsection blocks

	-s SIGMACUT, --sigmacut SIGMACUT

	give sigmacut in fb

	-illegal, --illegal

	turn on check for kinematically forbidden decays

	-dB, --decayBlocks

	turn off the check for missing decay blocks

	-f FILENAME, --filename FILENAME

	name of input SLHA file

A typical
usage example is:

smodelsTools.py slhachecker -s 0.01 -f inputFiles/slha/lightSquarks.slha

Running this will print the status flag and a message with potential warnings
and error messages.

Note

In SModelS versions prior to 1.2, the SLHA file checker also
checked for the existence of displaced vertices or heavy charged
particles in the input file. Since the inclusion of HSCP signatures in
SModelS, these checks are no longer done by the SLHA file checker.
However, if the input model contains a considerable fraction of cross-section
going into displaced vertex signatures, a warning is
issued on the screen when running SModelS.

Database Browser

In several cases the user might be interested in an easy way to directly access the database of Experimental Results.
This can be conveniently done using the database browser. The browser owns several methods to select Experimental Results
or DataSets satisfying some user-defined conditions as well as to access the meta data and data inside each
Experimental Result.

The usage of the browser interface is:

smodelsTools.py database-browser [-h] -p PATH_TO_DATABASE [-t]

	arguments:

	
	-h, --help

	show this help message and exit

	-p PATH_TO_DATABASE, --path_to_database PATH_TO_DATABASE

	path to SModelS database

	-t, --text

	load text database, dont even search for binary
database file

A typical usage example is:

smodelsTools.py database-browser -p ./smodels-database

Loading the database may take a few seconds if the binary database file exists.
Otherwise the pickle file will be created.
Starting the browser opens an IPython session, which can be used
to select specific experimental results (or groups of experimental results),
check upper limits and/or efficiencies for specific masses/topologies and access all the available
information in the database.
A simple example is given below:

In [1]: print (browser) #Print all experimental results in the browser
['ATLAS-SUSY-2015-01', 'ATLAS-SUSY-2015-01', 'ATLAS-SUSY-2015-02', 'ATLAS-SUSY-2015-02', ...

In [2]: browser.selectExpResultsWith(txName = 'T1tttt', dataType = 'upperLimit') #Select only the UL results with the topology T1tttt

In [3]: print (browser) #Print all experimental results in the browser (after selection)
['ATLAS-SUSY-2015-09', 'CMS-PAS-SUS-15-002', 'CMS-PAS-SUS-16-014', 'CMS-PAS-SUS-16-015', ...

In [4]: gluinoMass, LSPmass = 800.*GeV, 100.*GeV #Define masses for the T1tttt topology

In [5]: browser.getULFor('CMS-PAS-SUS-15-002','T1tttt',[[gluinoMass,LSPmass],[gluinoMass,LSPmass]]) #Get UL for a specific experimental result
Out[5]: 5.03E-02 [pb]

In [6]: for expResult in browser[:5]: #Get the upper limits for the first five of the selected results for the given topology and mass
 ...: print (expResult.getValuesFor('id'),'UL = ',expResult.getUpperLimitFor(txname='T1tttt',mass=[[gluinoMass,LSPmass],[gluinoMass,LSPmass]]))
 ...:
 ['ATLAS-SUSY-2015-09'] UL = None
 ['CMS-PAS-SUS-15-002'] UL = 5.03E-02 [pb]
 ['CMS-PAS-SUS-16-014'] UL = 4.10E-02 [pb]
 ['CMS-PAS-SUS-16-015'] UL = 1.80E-02 [pb]
 ['CMS-PAS-SUS-16-016'] UL = 5.76E-02 [pb]

In [7]: for expResult in browser[:5]: #Print the luminosities for the first five selected experimental results
 ...: print (expResult.getValuesFor('id'),expResult.getValuesFor('lumi'))
 ...:
 ['ATLAS-SUSY-2015-09'] [3.20E+00 [1/fb]]
 ['CMS-PAS-SUS-15-002'] [2.20E+00 [1/fb]]
 ['CMS-PAS-SUS-16-014'] [1.29E+01 [1/fb]]
 ['CMS-PAS-SUS-16-015'] [1.29E+01 [1/fb]]
 ['CMS-PAS-SUS-16-016'] [1.29E+01 [1/fb]]

Further Python example codes using the functionalities of the browser
can be found in Howto’s.

	The Database browser tool is implemented by the Browser class

Interactive Plots Maker

This tool allows to easily produce interactive plots which relate the SModelS output with information on the user’s model stored in the SLHA files. It gives 2d plots in the parameter space defined by the user, with additional user-defined information appearing in hover boxes. The output is in html format for viewing in a web browser. The aim is not to make publication-ready plots but to facilitate getting an overview of e.g. the properties of points in a scan. NB: this needs SLHA model input and SModelS python output!

Required python packages are: plotly, pandas, pyslha, os, decimal

The usage of the interactive plots tool is:

smodelsTools.py interactive-plots [-h] [-p PARAMETERS] -f SMODELSFOLDER -s SLHAFOLDER [-o OUTPUTFOLDER] [-N NPOINTS] [-v VERBOSITY]

	arguments:

	
	-h, --help

	show this help message and exit

	-p PARAMETERS, --parameters PARAMETERS

	path to the parameters file [./iplots_parameters.py]

	-f SMODELSFOLDER, --smodelsFolder SMODELSFOLDER

	path to the smodels folder with the SModelS python output files.

	-s SLHAFOLDER, --slhaFolder SLHAFOLDER

	path to the SLHA folder with the SLHA input files.

	-o OUTPUTFOLDER, --outputFolder OUTPUTFOLDER

	path to the output folder, where the plots will be stored. [./iplots]

	-N NPOINTS, --npoints NPOINTS

	How many (randomly selected) points will be included in the plot. If -1 all points will be read and included (default = -1).

	-v VERBOSITY, --verbosity VERBOSITY

	Verbosity (debug, info, warning, error)

A typical
usage example is:

smodelsTools.py interactive-plots -f inputFiles/scanExample/smodels-output/ -s inputFiles/scanExample/slha -p iplots_parameters.py -o results/iplots/

which will produce 3x9 plots in the gluino vs squark mass plane from a small scan example, viewable in a web browser.

iplots parameters file

The options for the inteactive plots tool are defined in a parameters file, iplots_parameters.py in the above example.
An example file, including all available parameters together with a short description, is stored in iplots_parameters.py.
Since the plotting information is model dependent, there is no default setting – the iplots parameters file is mandatory input.
Below we give more detailed information about each entry in this file.

	plot_title: main overall title for your plots, typically the model name.

	x and y axes: SLHA block and PDG code number of the variables you want to plot, e.g. ‘m_gluino’: [‘MASS’, 1000021].

	variable_x: In a dictionary form, give the name of the x-axis variable, and the block and PDG code number to find it in the SLHA file. Example: variable_x = {‘m_gluino[GeV]’: [‘MASS’, 1000021]}.

	variable_y: same for the y-axis. Example: variable_y = {‘m_suR[GeV]’: [‘MASS’, 2000002]}

	spectrum hover information: defines which information from the input SLHA file will appear in the hover box. The syntax is again a python dictonary.

	slha_hover_information: information from the input SLHA file, e.g. model parameters or masses. Example: slha_hover_information = {‘m_gluino’: [‘MASS’, 1000021], ‘m_suR’: [‘MASS’, 2000002], ‘m_LSP’: [‘MASS’, 1000022]}

	ctau_hover_information: displays the mean decay length in meter for the listed particle(s). Example: ctau_hover_information = {‘ctau_chi1+’: 1000024}

	BR_hover_information: defines for which particle(s) to display decay channels and branching ratios. Example: BR_hover_information = {‘BR_gluino’: 1000021}. WARNING: Lists of branching ratios can be very long, so the may not fit in the hover box. One can define the number of entries with BR_get_top, e.g. BR_get_top = 5 (default: BR_get_top = ‘all’).

	SModelS hover information: defines, as a list of keywords, which information to display from the SModelS output. Example: smodels_hover_information = [‘SmodelS_status’, ‘r_max’, ‘Tx’, ‘Analysis’, ‘file’]. The options are:

	SmodelS_status: prints whether the point is excluded or not by SModelS

	r_max: shows the highest r-value for each parameter point

	chi2: shows the chi^2 value, if available (if not, the output is ‘none’)

	Tx: shows the topology/ies which give r_max

	Analysis: shows the experimental analysis from which the strongest constraint (r_max) comes from

	MT_max: shows the missing topology with the largest cross section (in SModelS bracket notation)

	MT_max_xsec: shows the cross section of MT_max

	MT_total_xsec: shows the total missing cross section (i.e. the sum of all missing topologies cross sections)

	MT_long_xsec: shows the total missing cross section in long cascade decays

	MT_asym_xsec: shows the total missing cross section in decays with asymmetric branches

	MT_outgrid_xsec: shows the total missing cross section outside the mass grids of the experimental results

	file: shows the name of the input spectrum file

	Choice of plots to make

	plot_data: which points you want to plot; the options are: all, non-excluded, excluded points. Example: plot_data = [‘all’, ‘non-excluded’, ‘excluded’]

	plot_list: which quantities to plot in the x,y plane; the same options as for SModels hover information apply. Example: plot_list = [‘SmodelS_status’,’r_max’, ‘chi2’, ‘Tx’, ‘Analysis’, ‘MT_max’, ‘MT_max_xsec’, ‘MT_total_xsec’, ‘MT_long_xsec’, ‘MT_asym_xsec’]

File Permissions Fixer

In case the software was installed under a different user than it is used
(as is the case for system-wide installs), we ship a simple tool that fixes
the file permissions for the cross section calculation code.

The usage of the permissions fixer is:

smodelsTools.py fixpermissions [-h]

	arguments:

	
	-h, --help

	show this help message and exit

Execute the command as root, i.e.:

sudo smodelsTools.py fixpermissions

ToolBox

As a quick way to show the status of all external tools, use
the toolbox:

smodelsTools.py toolbox [-h] [-c] [-l] [-m]

	arguments:

	
	-h, --help

	show this help message and exit

	-c, --colors

	turn on terminal colors

	-l, --long

	long output lines

	-m, --make

	compile packages if needed

Detailed Guide to SModelS

	Basic Concepts and Definitions
	Simplified Model Definitions

	Database Definitions

	SModelS Structure
	Basic Input

	Decomposition into Simplified Models

	Theory Predictions

	Database of Experimental Results

	Confronting Predictions with Experimental Limits

	Topology Coverage

	Output Description
	Screen (Stdout) Output

	Log Output

	Summary File Output

	Python Output

	XML Output

	SLHA Output

Basic Concepts and Definitions

Throughout this manual, several concepts are used extensively. Here we define the most important ones,
their respective nomenclature and some useful notation.
The concepts related to the basic building blocks of the decomposition
of a full model into a sum of Simplified Models (or elements)
are described in Theory Definitions,
while the concepts relevant for the database of experimental
results are given in Database Definitions.

	Simplified Model Definitions
	Elements
	Vertices

	Z2-even Final States

	Z2-odd Intermediate States

	Z2-odd Final State Class

	Branches

	Element Representation: Bracket Notation

	Topologies

	Database Definitions
	Database

	Experimental Result
	Experimental Result: Upper Limit Type
	Upper Limit Constraint

	Upper Limit Conditions

	Experimental Result: Efficiency Map Type

	Data Sets

	TxName Convention

Simplified Model Definitions

The so-called theory module contains the basic tools necessary for decomposing the input model
(either in LHE or SLHA format) into simplified model topologies and using the output of the decomposition
to compute the theoretical prediction for a given experimental result.

The applicability of SModelS is currently restricted to models which contain a Z2
symmetry (R-parity in SUSY, K-parity in UED, …). This is required in
order to provide a clear structure for the simplified model topologies appearing
during the decomposition of the input model.
Below we describe the basic concepts and language used in SModelS
to describe the simplified model topologies.

Elements

A simplified model topology representing a specific cascade decay of a pair of BSM states produced in
the hard scattering is called an element in the SModelS language.
Elements contain the Z2-even particles appearing in
the cascade decay and the masses of the BSM (Z2-odd) states
which have decayed or appear in the last step of the decay.
Furthermore, the last BSM (Z2-odd) particle is classified
according to its quantum numbers as a specific final state
class: MET, HSCP, R-hadron,etc.
A representation of an element is shown below:

[image: _images/elementB.png]
An element may also hold information about its corresponding
weight (cross section times branching ratio times efficiency). 1
The overall properties of an element are illustrated in the scheme below:

[image: _images/topSchemeB.png]
SModelS works under the inherent assumption that, for collider purposes,
all the essential properties of a BSM model can be encapsulated by its
elements.
Such an assumption is extremely helpful to cast the theoretical predictions of a
specific BSM model in a model-independent framework, which can then be compared
against the corresponding experimental limits.
For instance, as shown in the scheme above, only the
masses of the BSM states and the quantum number of the last BSM state are used, while
other properties, such as their spins are ignored (the PID’s are, however, stored for book-keeping).

Below we describe in more detail the element properties and their implementation
in SModelS.

	Elements are described by the Element Class

Vertices

Each Z2-odd decay is represented by a vertex containing the outgoing states (one Z2-odd
state and the Z2-even particles), as shown in the scheme above.

Z2-even Final States

Z2-even final states coming out of a vertex (see scheme above) usually
correspond to Standard Model particles (electrons, gauge bosons, Higgs,…).
However, if the input model contains Z2-even BSM states (such as additional Higgs bosons),
these also appear as final states.
In contrast, stable or long-lived Z2-odd particles which might appear in the detector (either as MET or charged tracks)
are not classified as final states 2 .

	Z2-even states are defined in smodels/share/default_particles.py

Z2-odd Intermediate States

The intermediate Z2-odd states are always assumed to consist of BSM particles with prompt Z2
conserving decays of the form: (Z2-odd state) \(\rightarrow\) (Z2-odd state’) + final states.
The only information kept from the intermediate states are their masses (see scheme above).

	Z2-odd states are defined by the input model file (see model in parameters file)

Z2-odd Final State Class

Besides the intermediate Z2-odd BSM states, due to the assumed Z2 symmetry,
the element must also contain one stable Z2-odd final state (at least
in collider scales). The quantum numbers of this BSM final state are essential for defining which
type of signature this element represents.
In an element the Z2-odd final state quantum numbers are mapped to a final state class,
as defined in the particleNames module.
Some examples of final state classes are: ‘MET’, ‘HSCP’ and ‘RHadronQ’.
Displaced decays, which currently cannot be tested in SModelS, are tracked with a proxy final state class ‘Displaced’,
and will appear only in missing topologies.
New final state classes can also be easily defined in this module.

Branches

A branch is the basic substructure of an element.
It represents a series of cascade decays of a single initial Z2-odd
state.
The diagram below illustrates an example of a branch.

[image: _images/branchTopB.png]
The structure of each branch is fully defined by its number of vertices and the number of
final states coming out of each vertex.
Furthermore, the branch also holds the information about the particle labels for the Z2-even final states
coming out of each vertex, the masses of the Z2-odd states
and the Z2-odd final state class (e.g. ‘MET’), as shown below.

[image: _images/branchElB.png]

	Branches are described by the Branch Class

Element Representation: Bracket Notation

The structure and final states of elements are represented in textual form using a nested brackets
notation. The scheme below shows how to convert between the graphical and bracket representations of an element:

[image: _images/bracketNotationB.png]
The brackets are ordered and nested in the following way.
The outermost brackets correspond to the branches of the element.
The branches are sorted according to their size (see element sorting)
and each branch contains an ordered list of vertices.
Each vertex contains a list of the Z2-even final states (sorted alphabetically) coming out of the vertex.
Schematically, for the example in the figure above, we have:

element = [branch1, branch2]
 branch1 = [vertex1]
 vertex1 = [l+,l-]
 branch2 = [vertex1,vertex2]
 vertex1 = [l+]
 vertex2 = [nu]

Using the above scheme it is possible to unambiguously describe each element with a simple list of nested brackets.
However, in order to fully specify all the information relative to a single element, we must
also include the list of masses for the Z2-odd states, the list of Z2-odd
final state classes and the element weight.
The masses for the BSM (Z2-odd) states can also be represented by a mass array
for each branch, as shown below:

[image: _images/massNotationB.png]
Finally the Z2-odd final state classes can also
be represented as a list in addition to the bracket notation:

[image: _images/bracketNotation2.png]

Topologies

It is often useful to classify elements according to their
overall structure or topology.
Each topology corresponds to an undressed
element, removed of its Z2-even
final states, Z2-odd final state class and Z2-odd masses.
Therefore the topology is fully determined by its number of
branches, number of vertices in each branch and number of

Z2-even final states coming out of each vertex.

An example of a topology is shown below:

[image: _images/globTopB.png]
Within SModelS, elements are grouped according to their
topology. Hence topologies represent a list of elements sharing a
common basic structure (same number of branches, vertices and
final states in each vertex).

	Topologies are described by the Topology Class

	1

	In order to treat the UL and EM map results on the same footing,
SModelS applies a trivial binary efficiency to elements for UL-type
results as will be explained in detail later.

	2

	In order to shorten the notation we sometimes refer to Z2-even final states
simply as ‘’final states’‘. This should not be confused with the Z2-odd final state
class.

Database Definitions

The so-called experiment module
contains the basic tools necessary for handling the database of experimental results.
The SModelS database collects experimental
results of SUSY searches from both ATLAS and CMS, which are used to compute the
experimental constraints on specific models.
Starting with version 1.1, the SModelS database includes two types of experimental constraints:

	Upper Limit (UL) constraints: constrains on \(\sigma \times BR\) of simplified models, provided
by the experimental collaborations (see UL-type results);

	Efficiency Map (EM) constraints: constrains the total signal (\(\sum \sigma \times BR \times \epsilon\)) in
a specific signal region. Here \(\epsilon\) denotes the acceptance times efficiency.
These are either provided by the experimental collaborations or computed by
theory groups (see EM-type results);

Although the two types of constraints above are very distinct,
both the folder structure and the object structure of SModelS are sufficiently flexible to
simutaneously handle both UL-type and EM-type results.
Therefore, for both UL-type and EM-type constraints, the database obeys the following structure:

	
	Database: collects a list of Experimental Results.

	
	Experimental Result: each Experimental Result corresponds to an experimental preliminary result (i.e. a CONF-NOTE or PAS) or publication and contains a list of DataSets as well as general information about the result (luminosity, publication reference,…).

	DataSet:
a single DataSet corresponds to one signal region of the experimental
note or publication *. In case of UL-type results there is a single DataSet, usually corresponding to the best signal
region (for more details see DataSet). For EM-type results, there is one DataSet for each signal region.
Each DataSet contains the Upper Limit maps for Upper Limit results or the Efficiency maps for Efficiency Map results.

	Upper Limit map: contains the upper limit constraints for UL-type results. Each map refers to a single
simplified model (or more precisely to a single element or sum of elements).

	Efficiency map: contains the efficiencies for EM-type results. Each map refers to a single
simplified model (or more precisely to a single element or sum of elements).

A schematic summary of the above structure can be seen below:

[image: _images/databaseScheme.png]
In the following sections we describe the main concepts and elements which constitute the SModelS database.
More details about the database folder structure and object struture can be found in Database of Experimental Results.

Database

Each publication or conference note can be included in the database
as an Experimental Result. Hence, the database is simply a collection of experimental results.

	The Database is described by the Database Class

Experimental Result

An experimental result contains all the relevant information corresponding to an
experimental publication or preliminary result. In particular it holds general
information about the experimental analysis, such as the corresponding
luminosity, center of mass energy, publication reference, etc. The current
version allows for two possible types of experimental results: one containing
upper limit maps (UL-type)
and one containing efficiency maps (EM-type).

	Experimental Results are described by the ExpResult Class

Experimental Result: Upper Limit Type

Upper Limit (UL) experimental results contain the experimental constraints on
the cross section times branching ratio
(\(\sigma \times BR\)) for Simplified Models from a specific experimental publication or preliminary
result. These constraints are typically given in the format of Upper Limit maps,
which correspond to 95% confidence level (C.L.) upper limit values on \(\sigma \times BR\)
as a function of the respective parameter space (usually BSM masses
or slices over mass planes). The UL values usually assume the best signal region
(for a given point in parameter space), a combination of signal regions or
more involved limits from other methods.
Hence, for UL results there is a single DataSet, containing one
or more UL maps. An example of a UL map is shown below:

[image: _images/ULexample.png]
Within SModelS, the above UL map is used to constrain the
simplified model \(\tilde{q} + \tilde{q} \to \left(jet+\tilde{\chi}_1^0\right) + \left(jet+\tilde{\chi}_1^0\right)\).
Using the SModelS notation this simplified model is mapped to the
element \([[[jet]],[[jet]]]\), using the notation defined in
Bracket Notation.
In addition to the constraint information, it is also
possible to specificy a final state property for the simplified model,
which corresponds to the BSM final state signature (see Final State class).
If no final state is defined, the element
is assumed to have a \((MET,MET)\) final state signature.
Usually a single preliminary result/publication contains several UL maps, hence
each UL-type experimental result contains several UL maps, each one constraining
different simplified
models (elements or sum of elements).
We also point out that the exclusion curve shown in the UL map above is never used by SModelS.

Upper Limit Constraint

The upper limit constraint specifies which simplified model
(represented by an element or sum of elements) is being constrained by the respective UL map.
For simple constraints as the one shown in the UL map above,
there is a single element being constrained (\([[[jet]],[[jet]]]\)).
In some cases, however, the constraint corresponds to a sum of elements.
As an example, consider the ATLAS analysis [https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-049/] shown below:

[image: _images/constraintExample.png]
As we can see, the upper limits apply to the sum of the cross sections:

\[\sigma = \sigma([[[e^+]],[[e^-]]]) + \sigma([[[\mu^+]],[[\mu^-]]])\]

In this case the UL constraint is simply:

\[[[[e^+]],[[e^-]]] + [[[\mu^+]],[[\mu^-]]]\]

where it is understood that the sum is over the weights of the respective elements
and not over the elements themselves.

Note that the sum can be over particle charges, flavors or more complex combinations of elements.
However, almost all experimental results sum only over elements sharing a common topology.

Finally, in some cases the UL constraint assumes specific constributions from each element.
For instance, in the example above it is implicitly assumed that
both the electron and muon elements contribute equally to the total cross section.
Hence these conditions must also be specified along with the constraint, as described in UL conditions.

Upper Limit Conditions

When the analysis constraints are non-trivial (refer to a sum of elements), it is often the case
that there are implicit (or explicit) assumptions about the contribution of each element. For instance,
in the figure above, it is implicitly assumed that each lepton flavor contributes equally
to the summed cross section:

\[\sigma([[[e^+]],[[e^-]]]) = \sigma([[[\mu^+]],[[\mu^-]]]) \;\;\; \mbox{(condition)}\]

Therefore, when applying these constraints to general models, one must also verify if
these conditions are satisfied. Once again we can express these conditions in
bracket notation:

\[[[[e^+]],[[e^-]]] = [[[\mu^+]],[[\mu^-]]] \;\;\; \mbox{(condition)}\]

where it is understood that the condition refers to the weights of the respective elements
and not to the elements themselves.

In several cases it is desirable to relax the analysis conditions, so the analysis
upper limits can be applied to a broader spectrum of models. Once again, for the example mentioned
above, it might be reasonable to impose instead:

\[[[[e^+]],[[e^-]]] \simeq [[[\mu^+]],[[\mu^-]]] \;\;\; \mbox{(fuzzy condition)}\]

The departure from the exact condition can then be properly quantified and one can decide whether the analysis
upper limits are applicable or not to the model being considered.
Concretely, SModelS computes for each condition a number between 0 and 1, where
0 means the condition is exactly satisfied and 1 means it is maximally violated.
Allowing for a \(20\%\) violation of a condition corresponds approximately to
a ‘’condition violation value’’ (or simply condition value) of 0.2.
The condition values are given as an output of SModelS, so the user can decide what are the
maximum acceptable values.

Experimental Result: Efficiency Map Type

Unlike UL-type results, the main information held by Efficiency Map (EM) results are the efficiencies for simplified
models (represented by an element or sum of elements).
These may be provided by the experimental collaborations or independently computed by theory groups.
Efficiency maps correspond to a grid of simulated acceptance times efficiency
(\(A \times \epsilon\)) values for a specific signal region. In the following we will refer to
\(A \times \epsilon\) simply as efficiency and denote it by \(\epsilon\).
Furthermore, additional information, such as the luminosity, number of observed and expected events, etc is also
stored in a EM-type result.

Another important difference between UL-type results and EM-type results is the existence of several signal regions, which in SModelS
are mapped to DataSets. While UL-type results contain a single DataSet (‘’signal region’‘), EM results hold several DataSets,
one for each signal region (see the database scheme above).
Each DataSet contains one or more efficiency maps, one for each element or sum of elements.
The efficiency map is usually a function of the BSM masses appearing in the element, as shown by the example below:

[image: _images/EMexample.png]
Within SModelS the above EM map is used to compute the efficiency for the
element \([[[jet]],[[jet]]]\), where we are using the
notation defined in Bracket Notation.
Furthermore, a final state property can also be defined (see Final State class).
If no final state is given, the element
is assumed to have a \((MET,MET)\) final state signature.
Usually there are several EM maps for a single data set: one for each element
or sum of elements. In order to use a language similar to the one used in UL-type results, the element (or elements)
for which the efficiencies correspond to are still called constraint.

Although efficiencis are most useful for EM-type results, their concept can also be extended to
UL-type results. For the latter, the efficiencies for a given element are either 1, if the element
appears in the UL constraint, or 0, otherwise. Atlhough trivial, this extension
allows us to treat EM-type results and UL-type results in a very similar fashion
(see Theory Predictions for more details).

Data Sets

Data sets are a way to conveniently group efficiency maps corresponding to the same signal region.
As discussed in UL-type results, data sets are not necessary for UL-type results, since in this case there is a single ‘’signal region’‘.
Nonetheless, data sets are also present in UL-type results in order to allow for a similar structure for both EM-type
and UL-type results (see database scheme).

For UL-type results the data set contains the UL maps as well as some basic information, such as the type of Experimental Result (UL).
On the other hand, for EM-type results, each data set contains the EM maps for the corresponding signal region
as well as some additional information: the observed and expected number of events in the signal region, the signal upper
limit, etc.
In the folder structure shown in database scheme, the upper limit maps and efficiency maps
for each element (or sum of elements) are stored in files labeled accoring to the TxName convention.

	Data Sets are described by the DataSet Class

TxName Convention

Since using the bracket notation
to describe the simplified models appearing in the
upper limit or efficiency maps can be rather lenghty, it is useful to define a shorthand notation for
the constraints. SModelS adopts a notation based on
the CMS SMS conventions, where each specific constraint is
labeled as T<constraint name>, which we refer as TxName. For instance, the TxName corresponding to
the constraint in the example above is TSlepSlep.
A complete list of TxNames can be found here [https://smodels.github.io/docs/SmsDictionary].

	Upper limit and efficiency maps are described by the TxName Class

More details about the database folder structure and object
structure can be found in Database of Experimental Results.

	*

	The name Data Set is used instead of signal region because its concept is slightly more general. For instance,
in the case of UL-type results, a DataSet may not correspond to a single signal region, but to a combination of signal regions.

SModelS Structure

The main ingredients relevant for SModelS are:

	Basic Input

	Decomposition into Simplified Models

	Theory Predictions

	Database of Experimental Results

	Confronting Predictions with Experimental Limits

	Topology Coverage

In the following we discuss each of these in more detail.

Basic Input

Basic Model Input

The main input for SModelS is the full model definition, which can be
given in the two following forms:

	a SLHA (SUSY Les Houches Accord) file containing masses, branching ratios and cross sections for the BSM states
(see an example file here)

	a LHE (Les Houches Event) file containing parton level events
(see an example file here)

The SLHA format is usually more compact and best suited for supersymmetric models. On the other hand, a LHE file can always
be generated for any BSM model (through the use of your favorite MC generator). * In this case, however,
the precision of the results is limited to the MC statistics used to generate the file.
We also point out that all the decays appearing in the LHE input are assumed to be prompt and
this input format should no be used if the model contains meta-stable particles.

In the case of SLHA input only, the production cross sections for the BSM states also have to be included
in the SLHA file as SLHA blocks, according to the SLHA cross section format
(see example file).
For the MSSM and some of its extensions, they may
be calculated automatically using Pythia [http://home.thep.lu.se/~torbjorn/Pythia.html]
and NLLfast [http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast],
as discussed in cross section calculator.

In the case of LHE input, the total production cross section as well as
the center-of-mass energy should be listed in the <init></init> block, according to the standard LHE format
(see example file).
Moreover, all the Z2-even particles (see definition in final states) should be set as stable, since
in SModelS they are effectively considered as final states.
When generating the events it is also important to ensure that no mass smearing is applied, so the mass
values for a given particle are the same throughout the LHE file.

New Particles

Besides information about the masses and branching ratios, the user must also define
which particles are Z2-odd states (Intermediate states)
and which are Z2-even (Final states).
These definitions must be given in a model file, including
the particle’s quantum numbers, as illustrated in
the mssm.py file.
A path to a user’s own model file can be specified in the parameter file, in the [particles] section.

SLHA Format for Cross Sections

A list of cross section blocks (one for each production process)
must be included in the SLHA file for the SLHA-based Decomposition.
The SLHA format for each cross section block is shown below
(see the Les Houches note [http://phystev.cnrs.fr/wiki/2013:groups:tools:slha]):

[image: _images/xsecBlock.png]
The above example shows the cross section for \(pp \rightarrow \tilde{\tau}_1^- + \tilde{\nu}_{\tau}\)
at a center-of-mass energy of 8 TeV and at leading order.
The only information used by SModelS are the center-of-mass energy, the outgoing particle PDGs, the cross section value
and the QCD order. If the input file contains two cross sections for the same process but at different QCD orders, only
the highest order will be used.

	Reading of cross sections from an input file is
implemented by the getXsecFromSLHAFile method

	*

	SModelS can easily be used for non-SUSY models as long as they present a Z2-type symmetry.
However, it is the responsibility of the user to make sure that the SMS results
in the database actually apply to the model under consideration.

Decomposition into Simplified Models

Given an input model, the first task of SModelS is to decompose
the full model into a sum of Simplified Models (or elements in SModelS language).
Based on the input format, which can be

	a SLHA file or

	a LHE file

(see Basic Input),
two distinct (but similar) decomposition methods are applied:
the SLHA-based or the LHE-based decomposition.

SLHA-based Decomposition

The SLHA file describing the input model is required to contain the masses of all
the BSM states as well as their production cross sections, decay widths and branching ratios.
All the above information must follow the guidelines of the SLHA format. In particular, the cross sections also have to be included
as SLHA blocks according to the SLHA cross section format.

Once the production cross sections are read from the input file, all the cross sections for production
of two Z2-odd states are stored and serve as the initial step for the decomposition. (All the other cross sections
with a different number of Z2-odd states are ignored.)
Starting from these primary mothers, all the possible decays are generated
according to the information contained in the DECAY blocks. This procedure is represented in the figure below:

[image: _images/decomp1B.png]
Within SModelS all BSM particles are assumed to either decay promptly or to be stable (in detector scales).
To deal with BSM particles with small (non-zero) width SModelS computes the probability for prompt decay
(\(\mathcal{F}_{prompt}\)) as well as the probability for the particle to decay outside
the detector (\(\mathcal{F}_{long}\)).
If the particle has a considerable fraction of its decays taking place inside the detector
(i.e \(\mathcal{F}_{long} + \mathcal{F}_{prompt} \ll 1\)), we include a third possibility,
which is simply labeled as a displaced decay, with the fraction given by
\(\mathcal{F}_{displaced} = 1 - \mathcal{F}_{prompt} - \mathcal{F}_{long}\). 1
The branching fraction rescaled by \(\mathcal{F}_{long}\) describes the probability of a decay where the daughter BSM state
traverses the detector (thus is considered stable),
while the branching fraction rescaled by \(\mathcal{F}_{prompt}\) corresponds to a prompt decay which
will be followed by the next step in the cascade decay.
Finally, the rescaling by \(\mathcal{F}_{displaced}\) corresponds to the fraction of displaced
decays summed over all final states.
This reweighting is illustrated in the figure below:

[image: _images/decompScheme1b.png]
The precise values of \(\mathcal{F}_{prompt}\) and \(\mathcal{F}_{long}\)
depend on the relevant detector size (\(L\)), particle mass (\(M\)), boost
(\(\beta\)) and width (\(\Gamma\)), thus
requiring a Monte Carlo simulation for each input model. Since this is not
within the spirit of the simplified model approach, we approximate the prompt and
long-lived probabilities by:

\[\mathcal{F}_{long} = \exp\left(- \frac{\Gamma L_{outer}}{\langle \gamma \beta \rangle}\right) \mbox{ and }
\mathcal{F}_{prompt} = 1 - \exp\left(- \frac{\Gamma L_{inner}}{\langle \gamma \beta \rangle}\right),\]

where \(L_{outer}\) is the effective size of the detector (which we take to be 10 m for both ATLAS
and CMS), \(L_{inner}\) is the effective radius of the inner detector (which we take to be 1 mm for both ATLAS
and CMS). Finally, we take the effective time dilation factor to be \(\langle \gamma \beta \rangle = 1.3\) when
computing \(\mathcal{F}_{prompt}\) and \(\langle \gamma \beta \rangle = 1.43\) when computing \(\mathcal{F}_{long}\).
We point out that the above approximations are irrelevant if \(\Gamma\) is very large (\(\mathcal{F}_{prompt} \simeq 1\)
and \(\mathcal{F}_{long} \simeq 0\)) or close to zero (\(\mathcal{F}_{prompt} \simeq 0\)
and \(\mathcal{F}_{long} \simeq 1\)). Only elements containing particles which have a considerable fraction of displaced
decays will be sensitive to the values chosen above.

Following the above procedure it is possible to construct
all cascade decay possibilities (including the stable case)
for a given initial mother particle.
Within the SModelS language each of the possible cascade decays corresponds to a branch.
In order to finally generate elements, all the branches are combined in pairs according to the production cross sections,
as shown below:

[image: _images/decomp2B.png]
For instance, assume [b1,b2,b3] and [B1,B2] represent all possible branches (or cascade decays)
for the primary mothers A and B, respectively. Then, if a production cross section for \(pp \rightarrow A+B\) is given in the input file, the following elements will be generated:

[b1,B1], [b1,B2], [b2,B1], [b2,B2], [b3,B1] and [b3,B2]

Each of the elements generated according to the procedure just described will also
store its weight, which equals its production cross section times all the branching ratios appearing in it.
In order to avoid a too large number of elements, only those satisfying a minimum weight requirement are kept.
Furthermore, the elements are grouped according to their topologies. The final output of the
SLHA decomposition is a list of such topologies, where each topology contains a list of the elements generated during the decomposition.

	The SLHA decomposition is implemented by the SLHA decompose method

Minimum Decomposition Weight

Some models may contain a large number of new states and each may have a large number of possible decays.
As a result, long cascade decays are possible and the number of elements generated by the decomposition process
may become too large, and the computing time too long.
For most practical purposes, however, elements with extremely small weights (cross section times BRs times the width rescaling)
can be discarded, since they will fall well below the experimental limits. Therefore, during the SLHA decomposition,
whenever an element is generated with a weight below some minimum value, this element (and all elements derived from it) is ignored.
The minimum weight to be considered is given by the sigcut parameter
and is easily adjustable
(see slhaDecomposer.decompose).

Note that, when computing the theory predictions, the weight of several elements can be combined together. Hence
it is recommended to set the value of sigcut
approximately one order of magnitude below the minimum signal cross sections the experimental data can constrain.

LHE-based Decomposition

More general models can be input through an LHE event file containing parton-level events, including the production of the primary
mothers and their cascade decays. Each event can then be directly mapped to an element with the element weight
corresponding to the event weight.
Finally, identical elements can be combined together (adding their weights). The procedure is represented in the example below:

[image: _images/eventExample.png]
Notice that, for the LHE decomposition, the elements generated are restricted to the events in the input file. Hence,
the uncertainties on the elements weights (and which elements are actually generated by the model)
are fully dependent on the Monte Carlo statistics used to generate the LHE file.
Also, when generating the events it is important to ensure that no mass smearing is applied, so the events
always contain the same mass value for a given particle.

Note that since all decays appearing in an LHE event are assumed to be prompt, the LHE-based
decomposition should not be used for models with meta-stable BSM particles.

	The LHE decomposition is implemented by the LHE decompose method

Compression of Elements

During the decomposition process it is possible to perform several simplifications on
the elements generated. In both the LHE and SLHA-based decompositions, two useful
simplifications are possible: Mass Compression and Invisible Compression.
The main advantage of performing these compressions is that the simplified element is
always shorter (has fewer cascade decay steps), which makes it more likely to be constrained by experimental
results. The details behind the compression methods are as follows:

Mass Compression

In case of small mass differences, the decay of an intermediate state to a nearly degenerate
one will in most cases produce soft final states, which can not be experimentally detected.
Consequently, it is a good approximation to neglect the soft final states and compress the respective
decay, as shown below:

[image: _images/massCompB.png]
After the compression, only the lightest of the two near-degenerate masses are kept in the element, as shown above.
The main parameter which controls the compression is minmassgap,
which corresponds to the maximum value of \(\epsilon\)
in the figure above to which the compression is performed:

\[\begin{split}& \mbox{if } |M_j - M_{j+1}| < minmassgap \rightarrow \mbox{the decay is compressed}\\
& \mbox{if } |M_j - M_{j+1}| > minmassgap \rightarrow \mbox{the decay is NOT compressed}\\\end{split}\]

Note that the compression is an approximation since the final
states, depending on the boost of the parent state, may not always be soft.
It is recommended to choose values of minmassgap
between 1-10 GeV; the default value is 5 GeV.

	Mass compression is implemented by the massCompress method and can be easily turned on/off by the flag doCompress in the SLHA or LHE decompositions.

Invisible Compression

Another type of compression is possible when
the final states of the last decay are invisible.
The most common example is

\[A \rightarrow \nu + B\]

as the last step of the decay chain, where \(B\) is an insivible particle leading to a MET signature
(see final state class).
Since both the neutrino and
\(B\) are invisible, for all experimental purposes the effective MET object is \(B + \nu = A\).
Hence it is possible to omit the last step in the cascade decay, resulting in a compressed element.
Note that this compression can be applied consecutively to several steps of the cascade decay if all of them
contain only invisible final states:

[image: _images/invCompB.png]

	Invisible compression is implemented by the invisibleCompress method and can be easily turned on/off by the flag doInvisible in the SLHA or LHE decompositions.

Element Sorting

In order to improve the code performance, elements created during decomposition and
sharing a commong topology are sorted.
Sorting allows for an easy ordering of the elements belonging to a topology and
faster element comparison.
Elements are sorted according to their branches. Branches are compared according to
the following properties:

	Number of vertices

	Number of final states in each vertex

	Final state (Z2-even) particles (particles belonging to the same vertex are alphabetically sorted)

	Mass array

	Final state signature

As an example, consider the three elements below:

[image: _images/elSorting.png]
The correct ordering of the above elements is:

Element 3 < Element 2 < Element 1

Element 1 is ‘larger’ than the other two since it has a larger number of vertices.
Elements 2 and 3 are identical, except for their masses. Since the mass array of
Element 3 is smaller than the one in Element 2, the former is ‘smaller’ than the latter.
Finally if all the branch features listed above are identical for both branches, the
elements being compared are considered to be equal.
Futhermore, the branches belonging to the same element are also sorted. Hence, if an element
has two branches:

\[element = [branch1, branch2],\]

it implies

\[branch1 < branch2.\]

	Branch sorting is implemented by the sortBranches method

	1

	Note that the final states appearing in the displaced vertex are not stored during decomposition,
since SModelS can not currently constrain displaced decay signatures. As a result, all elements
with displaced decays will be identified as missing topologies.

Theory Predictions

The decomposition of the input model as a sum of elements
(simplified models) is the
first step for confronting the model with the experimental limits.
The next step consists of computing the relevant signal cross sections
(or theory predictions) for comparison with the experimental limits. Below we describe the procedure
for the computation of the theory predictions after the model has been decomposed.

Computing Theory Predictions

As discussed in Database Definitions, the SModelS database allows
for two types of experimental constraints:
Upper Limit constraints (see UL-type results) and Efficiency Map constraints (see EM-type results).
Each of them requires different theoretical predictions to be compared against experimental data.

UL-type results constrains the weight of one element or sum of elements.
The element weight is defined as \(\sigma \times BR \times \mathcal{F}\), where \(\sigma\) is the total
production cross-section, \(BR\) is the product of all branching ratios
for the decays appearing in the element and \(\mathcal{F}\) is the product
of all the lifetime reweighting factors (\(\mathcal{F}_{long}\) and \(\mathcal{F}_{prompt}\)),
as discussed in the SLHA decomposition (for the LHE-type decomposition
\(\mathcal{F}=1\)).

Therefore, in order to apply the experimental constraints, SModelS must first
compute the theoretical value of \(\sigma \times BR \times \mathcal{F}\) summing only over the elements
appearing in the respective constraint.
This is done applying a 1 (zero) efficiency (\(\epsilon\)) for the
elements which appear (do not appear) in the constraint.
Then the final theoretical prediction is the sum over all
elements with a non-zero value of \(\sum \sigma \times BR \times \mathcal{F} \times \epsilon\). This value can then be compared with the
respective 95% C.L. upper limit extracted from the UL map (see UL-type results).

On the other hand, EM-type results constrain the total signal (\(\sum \sigma \times BR \times \mathcal{F} \times \epsilon\)) in a given signal region (DataSet).
Consequently, in this case SModelS must compute \(\sigma \times BR \times \mathcal{F} \times \epsilon\) for each element, using the efficiency maps for
the corresponding DataSet. The final theoretical prediction is the sum over all elements
with a non-zero value of \(\sigma \times BR \times \mathcal{F} \times \epsilon\).
This value can then be compared with the signal upper limit for the respective
signal region (data set).

For experimental results for which the covariance matrix is provided, it
is possible to combine all the signal regions (see Combination of Signal Regions).
In this case the final theory prediction corresponds to the sum of \(\sigma \times BR \times \mathcal{F} \times \epsilon\) over all signal regions (and all elements)
and the upper limit is computed for this sum.

Although the details of the theoretical prediction computation differ depending on the type
of Experimental Result (UL-type results or EM-type results), the overall procedure is common for both type of results. Below we schematically
show the main steps of the theory prediction calculation:

[image: _images/theoryPredScheme.png]
As shown above the procedure can always be divided in two main steps:
Element Selection and Element Clustering.
Once the elements have been selected and clustered, the theory prediction for each DataSet is given by
the sum of all the element weights (\(\sigma \times BR \times \mathcal{F} \times \epsilon\)) belonging to the same cluster:

\[\mbox{theory prediction } = \sum_{cluster} (\mbox{element weight}) = \sum_{cluster} (\sigma \times BR \times \mathcal{F} \times \epsilon)\]

Below we describe in detail the element selection and element clustering
methods for computing the theory predictions for each type
of Experimental Result separately.

	Theory predictions are computed using the theoryPredictionsFor method

Theory Predictions for Upper Limit Results

Computation of the signal cross sections for a given
UL-type result takes place in two steps. First selection of the
elements generated by the model decomposition and then clustering
of the selected elements according to their masses. These two steps are described below.

Element Selection

An UL-type result holds upper limits for the cross sections of an element
or sum of elements. Consequently, the first step for computing the theory predictions for the corresponding
experimental result is to select the elements that appear in the UL result constraint.
This is conveniently done attributing to each element an efficiency equal to 1 (0)
if the element appears (does not appear) in the constraint.
After all the elements weights (\(\sigma \times BR\)) have been rescaled
by these ‘’trivial’’ efficiencies, only the ones with non-zero weights are relevant for the signal
cross section.
The element selection is then trivially achieved by selecting all the elements with non-zero weights.

The procedure described above is illustrated graphically in the figure below for the simple example where the
constraint is \([[[e^+]],[[e^-]]]\,+\,[[[\mu^+]],[[\mu^-]]]\).

[image: _images/ULselection.png]

	The element selection is implemented by the getElementsFrom method

Element Clustering

Naively one would expect that after all the elements appearing in the constraint
have been selected, it is trivial to compute the theory prediction: one must simply
sum up the weights (\(\sigma \times BR \times \mathcal{F}\)) of all the selected elements.
However, the selected elements usually differ in their masses * and the
experimental limit (see Upper Limit constraint) assumes that all the elements appearing
in the constraint have the same mass (or mass array).
As a result, the selected elements must be grouped into clusters of equal masses.
When grouping the elements, however, one must allow for small mass differences,
since the experimental efficiencies should not be strongly sensitive to small mass
differences. For instance, assume two elements contain identical mass arrays, except for the parent masses
which differ by 1 MeV. In this case it is obvious that for all experimental purposes the two elements
have identical masses and should contribute to the same theory prediction (e.g. their weights should be
added when computing the signal cross section).
Unfortunately there is no way to
unambiguously define ‘’similar masses’’ and the definition should depend on the Experimental Result, since
different results will be more or less sensitive to mass differences. SModelS uses an UL map-dependent
measure of the distance between two element masses, as described in Mass Distance.

If two of the selected elements have a mass distance smaller
than a maximum value (defined by maxDist),
they are gouped in the same mass cluster, as illustrated by the example below:

[image: _images/ULcluster.png]
Once all the elements have been clustered, their weights can finally be added together
and compared against the experimental upper limit.

	The clustering of elements is implemented by the clusterElements method.

Mass Distance

As mentioned above, in order to cluster the elements it is necessary
to determine whether two elements have similar masses (see element and Bracket Notation
for more details on element mass).
Since an absolute definition of ‘’similar masses’’ is not possible and the sensitivity to mass differences
depends on the experimental result, SModelS uses an ‘’upper limit map-dependent’’ definition. For each element’s mass array,
the upper limit for the corresponding mass values is obtained from the UL map (see UL-type result).
This way, each mass array is mapped to a single number (the cross section upper limit for the experimental result).
Then the distance between the two element’s masses is simply given by the relative difference between their respective
upper limits. More explicitly:

\[\begin{split}\mbox{Element } A\; (& M_A = [[M1,M2,...],[m1,m2,...]]) \rightarrow \mbox{ Upper Limit}(M_A) = x\\
\mbox{Element } B\; (& M_B = [[M1',M2',...],[m1',m2',...]]) \rightarrow \mbox{ Upper Limit}(M_B) = y\\
 & \Rightarrow \mbox{mass distance}(A,B) = \frac{|x-y|}{(x+y)/2}\end{split}\]

where \(M_A,M_B\) (\(x,y\)) are the mass arrays (upper limits) for the elements A and B, respectively.
If the mass distance of two elements is smaller than maxDist,
the two masses are considered similar.

Notice that the above definition of mass distance quantifies the experimental analysis
sensitivity to mass differences, which is the relevant parameter when clustering elements.
Also, a check is performed to ensure that masses with very distinct values but similar upper limits are not
clustered together.

	The mass distance function is implemented by the distance method

Theory Predictions for Efficiency Map Results

In order to compute the signal cross sections for a given EM-type result, so it can be compared
to the signal region limits, it is first necessary to apply the efficiencies (see EM-type result) to all the elements generated
by the model decomposition.
Notice that typically a single EM-type result contains several signal regions (DataSets) and there will be a set of efficiencies
(or efficiency maps) for each data set. As a result, several theory predictions (one for each data set) will be computed.
This procedure is similar (in nature) to
the Element Selection applied in the case of an UL-type result, except that now it must be repeated
for several data sets (signal regions).

After the element’s weights have being rescaled by the corresponding efficiencies for the given data set (signal region),
all of them can be grouped together in a single cluster, which will provide a single theory prediction (signal
cross section) for each DataSet. Hence the element clustering discussed below is completely trivial.
On the other hand the element selection is slightly more involved than in the UL-type result
case and will be discussed in more detail.

Element Selection

The element selection for the case of a EM-type result consists of rescaling all the elements
weights by their efficiencies, according to the efficiency map of the corresponding DataSet.
The efficiency for a given DataSet depends both on the element mass and on its topology and particle content.
In practice the efficiencies for most of the elements will be extremely small (or zero), hence only a subset effectively
contributes after the element selection †.
In the figure below we illustrate the element selection for the case of a EM-type result/DataSet:

[image: _images/EMselection.png]
If, for instance, the analysis being considered vetoes \(jets\) and \(\tau\)’s in the final state,
we will have \(\epsilon_2,\, \epsilon_4 \simeq 0\) for the example in the figure above.
Nonetheless, the element selection for a DataSet is usually more inclusive than
the one applied for the UL-type result, resulting in less conservative values for the theory prediction.

	The element selection is implemented by the getElementsFrom method

Element Clustering

Unlike the clustering required in the case of UL-type result
(see Element Clustering for an UL analysis), after the efficiencies have been
applied to the element’s weights, there is no longer the necessity to group the elements
according to their masses, since the mass differences have already been accounted for by the different efficiencies.
As a result, after the element selection all elements belong to a single cluster:

[image: _images/EMcluster.png]

	The (trivial) clustering of elements is implemented by the clusterElements method.

	*

	As discussed in Database Definitions, UL-type results have a single DataSet.

	†

	When refering to an element mass, we mean all the intermediate state masses
appearing in the element (or the element mass array). Two elements are considered to have identical
masses if their mass arrays are identical (see element and Bracket Notation
for more details).

	‡

	The number of elements passing the selection also depends on the availability of efficiency maps
for the elements generated by the decomposition. Whenever there are no efficiencies available for a
element, the efficiency is taken to be zero.

Database of Experimental Results

SModelS stores all the information about the experimental results in the
Database.
Below we describe both the directory and object structure of the Database.

Database: Directory Structure

The Database is organized as files in an ordinary (UNIX)
directory hierarchy, with a thin Python layer serving as the access to the
database. The overall structure of the directory hierarchy and its contents is
depicted in the scheme below (click to enlarge):

[image: _images/DatabaseFolders.png]
As seen above, the top level of the SModelS database categorizes the analyses
by LHC center-of-mass energies, \(\sqrt{s}\):

	8 TeV

	13 TeV

Also, the top level directory contains a file called version with the
version string of the database.
The second level splits the results up between the different experiments:

	8TeV/CMS/

	8TeV/ATLAS/

The third level of the directory hierarchy encodes the Experimental Results:

	8TeV/CMS/CMS-SUS-12-024

	8TeV/ATLAS/ATLAS-CONF-2013-047

	…

	The Database folder is described by the Database Class

Experimental Result Folder

Each Experimental Result folder contains:

	a folder for each DataSet (e.g. data)

	a globalInfo.txt file

The globalInfo.txt file contains the meta information about the Experimental Result.
It defines the center-of-mass energy \(\sqrt{s}\), the integrated luminosity, the id
used to identify the result and additional information about the source of the
data. Here is the content of CMS-SUS-12-024/globalInfo.txt as an example:

sqrts: 8.0*TeV
lumi: 19.4/fb
id: CMS-SUS-12-024
prettyName: \slash{E}_{T}+b
url: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS12024
arxiv: http://arxiv.org/abs/1305.2390
publication: http://www.sciencedirect.com/science/article/pii/S0370269313005339
contact: Keith Ulmer <keith.ulmer@cern.ch>, Josh Thompson <joshua.thompson@cern.ch>, Alessandro Gaz <alessandro.gaz@cern.ch>
private: False
implementedBy: Wolfgang Waltenberger
lastUpdate: 2015/5/11

	Experimental Result folder is described by the ExpResult Class

	globalInfo files are descrived by the Info Class

Data Set Folder

Each DataSet folder (e.g. data) contains:

	the Upper Limit maps for UL-type results or Efficiency maps for EM-type results (TxName.txt files)

	a dataInfo.txt file containing meta information about the DataSet

	Data Set folders are described by the DataSet Class

	TxName files are described by the TxName Class

	dataInfo files are described by the Info Class

Data Set Folder: Upper Limit Type

Since UL-type results have a single dataset (see DataSets), the info file only holds
some trivial information, such as the type of Experimental Result (UL) and the dataset id
(None for UL-type results). Here is the content of CMS-SUS-12-024/data/dataInfo.txt as an
example:

dataType: upperLimit
dataId: None

For UL-type results, each TxName.txt file contains the UL map for a given simplified model
(element or sum of elements) as well as some meta information,
including the corresponding constraint and conditions. The
first few lines of CMS-SUS-12-024/data/T1tttt.txt read:

txName: T1tttt
constraint: [[['t','t']],[['t','t']]]
condition: None
conditionDescription: None
figureUrl: https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS12024/T1tttt_exclusions_corrected.pdf
source: CMS
validated: True
axes: [[x, y], [x, y]]

If the finalState property is not provided, the simplified model is assumed to
contain neutral BSM final states in each branch, leading to a MET signature.
However, if this is not the case, the non-MET final states must be explicitly listed
in the TxName.txt file (see final state classes for more details).
An example from the CMS-EXO-12-026/data/THSCPM1b.txt file is shown below:

txName: THSCPM1b
constraint: [[],[]]
source: CMS
axes: [[x], [x]]
finalState: ['HSCP', 'HSCP']

The second block of data in the TxName.txt file contains the upper limits as a function of the BSM masses:

upperLimits: [[[[4.0000E+02*GeV,0.0000E+00*GeV],[4.0000E+02*GeV,0.0000E+00*GeV]],1.8158E+00*pb],
[[[4.0000E+02*GeV,2.5000E+01*GeV],[4.0000E+02*GeV,2.5000E+01*GeV]],1.8065E+00*pb],
[[[4.0000E+02*GeV,5.0000E+01*GeV],[4.0000E+02*GeV,5.0000E+01*GeV]],2.1393E+00*pb],
[[[4.0000E+02*GeV,7.5000E+01*GeV],[4.0000E+02*GeV,7.5000E+01*GeV]],2.4721E+00*pb],
[[[4.0000E+02*GeV,1.0000E+02*GeV],[4.0000E+02*GeV,1.0000E+02*GeV]],2.9297E+00*pb],
[[[4.0000E+02*GeV,1.2500E+02*GeV],[4.0000E+02*GeV,1.2500E+02*GeV]],3.3874E+00*pb],
[[[4.0000E+02*GeV,1.5000E+02*GeV],[4.0000E+02*GeV,1.5000E+02*GeV]],3.4746E+00*pb],
[[[4.0000E+02*GeV,1.7500E+02*GeV],[4.0000E+02*GeV,1.7500E+02*GeV]],3.5618E+00*pb],
[[[4.2500E+02*GeV,0.0000E+00*GeV],[4.2500E+02*GeV,0.0000E+00*GeV]],1.3188E+00*pb],
[[[4.2500E+02*GeV,2.5000E+01*GeV],[4.2500E+02*GeV,2.5000E+01*GeV]],1.3481E+00*pb],
[[[4.2500E+02*GeV,5.0000E+01*GeV],[4.2500E+02*GeV,5.0000E+01*GeV]],1.7300E+00*pb],

As we can see, the UL map is given as a Python array with the structure:
\([[\mbox{masses},\mbox{upper limit}], [\mbox{masses},\mbox{upper limit}],...]\).

Data Set Folder: Efficiency Map Type

For EM-type results the dataInfo.txt contains relevant information, such as an id to
identify the DataSet (signal region), the number of observed and expected
background events for the corresponding signal region and the respective signal
upper limits. Here is the content of
CMS-SUS-13-012-eff/3NJet6_1000HT1250_200MHT300/dataInfo.txt as an example:

dataType: efficiencyMap
dataId: 3NJet6_1000HT1250_200MHT300
observedN: 335
expectedBG: 305
bgError: 41
upperLimit: 5.681*fb
expectedUpperLimit: 4.585*fb

For EM-type results, each TxName.txt file contains the efficiency map for a given
simplified model (element or sum of elements) as well as some meta
information.
Here is the first few lines of CMS-SUS-13-012-eff/3NJet6_1000HT1250_200MHT300/T2.txt:

txName: T2
conditionDescription: None
condition: None
constraint: [[['jet']],[['jet']]]
figureUrl: https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS13012/Fig_7a.pdf
validated: True
axes: 2*Eq(mother,x)_Eq(lsp,y)
publishedData: False

As seen above, the first block of data in the T2.txt file contains
information about the element (\([[[\mbox{jet}]],[[\mbox{jet}]]]\))
in bracket notation for which the
efficiencies refers to as well as reference to the original data source and
some additional information.
As in the Upper Limit case, the simplified
model is assumed to contain neutral BSM final states (MET signature).
For non-MET final states the finalState field must list
the final state signatures.
The second block of data contains the efficiencies as a function of the BSM masses:

efficiencyMap: [[[[312.5*GeV, 12.5*GeV], [312.5*GeV, 12.5*GeV]], 0.00109],
[[[312.5*GeV, 62.5*GeV], [312.5*GeV, 62.5*GeV]], 0.00118],
[[[312.5*GeV, 112.5*GeV], [312.5*GeV, 112.5*GeV]], 0.00073],
[[[312.5*GeV, 162.5*GeV], [312.5*GeV, 162.5*GeV]], 0.00044],
	...

As we can see the efficiency map is given as a Python array with the structure:
\([[\mbox{masses},\mbox{efficiency}], [\mbox{masses},\mbox{efficiency}],...]\).

Inclusive Simplified Models

If the analysis signal efficiencies are insensitive to
some of the simplified model final states, it might be convenient to define
inclusive simplified models. A typical case are some of the heavy stable charged
particle searches, which only rely on the presence of a non-relativistic charged
particle, which leads to an anomalous charged track signature.
In this case the signal efficiencies are highly insensitive to the remaining event
activity and the corresponding simplified models can be very inclusive.
In order to handle this inclusive cases in the database we allow for wildcards
when specifying the constraints.
For instance, the constraint for the CMS-EXO-13-006 eff/c000/THSCPM3.txt
reads:

txName: THSCPM3
constraint: [[['*']],[['*']]]

and represents the (inclusive) simplified model:

[image: _images/elementInclusive.png]
Note that although the final state represented by “*” is any Z2-even final states,
it must still correspond to a single particle, since the topology specifies a 2-body
decay for the initially produced BSM particle.
Finally, it might be useful to define even more inclusive simplified models, such
as the one in CMS-EXO-13-006 eff/c000/THSCPM4.txt:

txName: THSCPM4
constraint: [[*],[['*']]]
finalState: ['MET', 'HSCP']

In the above case the simplified model corresponds to an HSCP being initially produced
in association with any BSM particle which leads to a MET signature.
Notice that the notation “[*]” corresponds to any `branch, while [“*”] means any particle:

[image: _images/elementInclusive2.png]
In such cases the mass array for the arbitrary branch must also be specified as
using wildcards:

efficiencyMap: [[['*',[5.5000E+01*GeV,5.0000E+01*GeV]],5.27e-06],
[['*',[1.5500E+02*GeV,5.0000E+01*GeV]],1.28e-07],
[['*',[1.5500E+02*GeV,1.0000E+02*GeV]],0.13],

Database: Object Structure

The Database folder structure is mapped to Python
objects in SModelS.
The mapping is almost one-to-one, except for a few exceptions.
Below we show the overall object structure as well as the folders/files the objects
represent (click to enlarge):

[image: _images/DatabaseObjects.png]
The type of Python object (Python class, Python list,…) is shown in brackets.
For convenience, below we explicitly list the main database folders/files and
the Python objects they are mapped to:

	Database folder \(\rightarrow\) Database Class

	Experimental Result folder \(\rightarrow\) ExpResult Class

	DataSet folder \(\rightarrow\) DataSet Class

	globalInfo.txt file \(\rightarrow\) Info Class

	dataInfo.txt file \(\rightarrow\) Info Class

	Txname.txt file \(\rightarrow\) TxName Class

Database: Binary (Pickle) Format

At the first time of instantiating the
Database
class, the text files in <database-path>.
are loaded and parsed, and the corresponding
data objects are built. The efficiency and upper limit maps themselves are
subjected to standard preprocessing steps such as a principal component
analysis and Delaunay triangulation (see Figure below).
The simplices defined during triangulation are then used for linearly interpolating the data grid,
thus allowing SModelS to compute efficiencies or upper limits for arbitrary
mass values (as long as they fall inside the data grid).
This procedure provides an efficient and numerically robust way of
dealing with generic data grids, including arbitrary parametrizations of the mass parameter space,
irregular data grids and asymmetric branches.

[image: _images/delaunay.png]
For the sake of efficiency, the entire database – including the Delaunay
triangulation – is then serialized into a pickle
file (<database-path>/database.pcl), which will be read directly the next time the database is loaded.
If any changes in the database folder structure are detected, the python or the SModelS
version has changed, SModelS will automatically re-build the pickle file. This
action may take a few minutes, but it is again performed only once.
If desired, the pickling process can be skipped using the option force_load = `txt’
in the constructor of
Database .

	The pickle file is created by the createBinaryFile method

Confronting Predictions with Experimental Limits

Once the relevant signal cross sections (or theory predictions) have been computed
for the input model, these must be compared to the respective upper limits.
The upper limits for the signal are stored in the SModelS Database
and depend on the type of Experimental Result: UL-type or EM-type.

In the case of a UL-type result, the theory predictions typically consist of a list of signal
cross sections (one for each cluster) for
the single data set (see Theory Predictions for Upper Limit Results for more details).
Each theory prediction must then be compared to its
corresponding upper limit. This limit is simply the cross section upper limit provided by
the experimental publication or conference note and is extracted from the corresponding UL map (see UL-type results).

For EM-type results there is a single cluster for each data set (or signal region), and hence a single signal cross section
value. This value must be compared to the upper limit for the corresponding signal region.
This upper limit is easily computed using the number of observed and expected events for the data set
and their uncertainties and is typically stored in the Database.
Since most EM-type results have several signal regions (data sets), there will be one theory prediction/upper limit
for each data set. By default SModelS keeps only the best data set, i.e. the one with the largest
ratio \(r_\mathrm{exp}=(\mathrm{theory\,prediction})/(\mathrm{expected\, limit})\). (See below for combination of signal regions)
Thus each EM-type result will have a single theory prediction/upper limit, corresponding to the best data set
(based on the expected limit).
If the user wants to have access to all the data sets, the default
behavior can be disabled by setting useBestDataset=False in theoryPredictionsFor (see Example.py).

The procedure described above can be applied to all the Experimental Results in the database, resulting
in a list of theory predictions and upper limits for each Experimental Result. A model can then be considered
excluded by the experimental results if, for one or more predictions, we have theory prediction \(>\) upper limit *.

	The upper limits for a given UL-type result or EM-type result can be obtained using the getUpperLimitFor method

Likelihood Computation

In the case of EM-type results, additional statistical information
about the constrained model can be provided by the SModelS output.
Most importantly, we can compute a likelihood,
which describes the plausibility of the data \(D\), given a signal strength \(\mu\):

\[\mathcal{L}(\mu,\theta|D) = P\left(D|\mu + b + \theta \right) p(\theta)\]

Here, \(\theta\) denotes the nuisance parameter that describes the
variations in the signal and background contribtions due to systematic
effects.

If no information about the correlation of signal regions is available
(or if its usage is turned off, see Using SModelS),
we compute a simplified likelihood for the most sensitive (a.k.a. best) signal region,
i.e. the signal region with the highest \(r_\mathrm{exp}=(\mathrm{theory\,prediction})/(\mathrm{expected\, limit})\),
following the procedure detailed in CMS-NOTE-2017-001 [https://cds.cern.ch/record/2242860?ln=en].

This means we assume \(p(\theta)\) to follow a Gaussian distribution centered
around zero and with a variance of \(\delta^2\),
whereas \(P(D)\) corresponds to a counting variable and is thus
properly described by a Poissonian. The complete likelihood thus reads:

\[\mathcal{L}(\mu,\theta|D) = \frac{(\mu + b + \theta)^{n_{obs}} e^{-(\mu + b + \theta)}}{n_{obs}!} exp \left(-\frac{\theta^2}{2\delta^2} \right)\]

where \(n_{obs}\) is the number of observed events in the signal region.
A test statistic \(T\) can now be constructed from a likelihood ratio test:

\[\begin{split}T = -2 \ln \frac{H_0}{H_1} = -2 \ln \left(\frac{\mathcal{L}(\mu=n_{\mathrm{signal}},\theta|D)}{sup\{\mathcal{L}(\mu,\theta|D) : \mu \in \mathbb{R}^+ \}}\right)\end{split}\]

As the signal hypothesis in the numerator presents a special case of the
likelihood in the denominator, the Neyman-Pearson lemma holds, and we
can assume \(T\) to be distributed according to a \(\chi^2\) distribution
with one degree of freedom. Because \(H_0\) assumes the signal strength of
a particular model, \(T=0\) corresponds to a perfect match between that
model’s prediction and the measured data. \(T \gtrsim 3.84\) corresponds to
a 95% confidence level upper limit.
While \(n_{\mathrm{obs}}\), \(b\) and \(\delta_{b}\) are directly extracted from
the data set
(coined observedN, expectedBG and bgError, respectively),
\(n_{\mathrm{signal}}\) is obtained from the calculation of the
theory predictions. A default 20% systematical uncertainty is assumed for \(n_{\mathrm{signal}}\),
resulting in \(\delta^2 = \delta_{b}^2 + \left(0.2 n_{\mathrm{signal}}\right)^2\).

SModelS reports the \(\chi^2\) (\(T\) values) and likelihood for each EM-type result,
together with the observed and expected \(r\) values.
We note that in the general case analyses may be correlated, so summing up the \(T\)
values will no longer follow a \(\chi^2_{(n)}\) distribution.
Therefore, for a conservative interpretation, only the result with the best expected limit should be used.
Moreover, for a statistically rigorous usage in scans, it is recommended to check that the analysis giving the
best expected limit does not wildly jump within
continuous regions of parameter space that give roughly the same phenomenology.

	The \(\chi^2\) for a given EM-type result is computed using the chi2 method

	The likelihood for a given EM-type result is computed using the likelihood method

Combination of Signal Regions - Simplified Likelihood Approach

If the experiment provides information about the (background) correlations, signal regions can be combined.
To this end, CMS sometimes provides a covariance matrix together with the efficiency maps.
The usage of such covariance matrices
is implemented in SModelS v1.1.3 onwards, following as above the simplified likelihood approach described in CMS-NOTE-2017-001 [https://cds.cern.ch/record/2242860?ln=en].

SModelS allows for a marginalization as well as a profiling of the nuisances, with profiling being the default (an example for using marginalisation can be found in How To’s).
Since CPU performance is a concern in SModelS, we try to aggregate the official results, which can comprise >100 signal regions, to an acceptable number of aggregate regions. Here acceptable means as few aggregate regions as possible without loosing in precision or constraining power.
The CPU time scales roughly linearly with the number of signal regions, so aggregating e.g. from 80 to 20 signal regions means gaining a factor 4 in computing time.

Under the assumptions described in CMS-NOTE-2017-001 [https://cds.cern.ch/record/2242860?ln=en],
the likelihood for the signal hypothesis when combining signal regions is given by:

\[\mathcal{L}(\mu,\theta|D) = \prod_{i=1}^{N} \frac{(\mu s_i^r + b_i + \theta_i)^{n_{obs}^i} e^{-(\mu s_i^r + b_i + \theta_i)}}{n_{obs}^i!} exp \left(-\frac{1}{2} \vec{\theta}^T V^{-1} \vec{\theta} \right)\]

where the product is over all \(N\) signal regions, \(\mu\) is the overall signal strength, \(s_i^r\) the relative signal strength
in each signal region and \(V\) represents the covariance matrix.
Note, however, that unlike the case of a single signal region, we do not include any signal uncertainties, since this
should correspond to a second order effect.

Using the above likelihood we compute a 95% confidence level limit on \(\mu\) using the \(CL_s\) (\(CL_{sb}/CL_{b}\)) limit from the
test statistic \(q_\mu\), as described in Eq. 14 in G. Cowan et al.,
Asymptotic formulae for likelihood-based tests [https://arxiv.org/abs/1007.1727].
We then search for the value \(CL_s = 0.95\) using the Brent bracketing technique available through the scipy optimize library [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html].
Note that the limit computed through this procedure applies to the total signal yield summed over all signal regions and assumes
that the relative signal strengths in each signal region are fixed by the signal hypothesis. As a result, the above limit has to be computed
for each given input model (or each theory prediction), thus considerably increasing CPU time.

When using runSModelS.py, the combination of signal regions is turned on or off with the parameter options:combineSRs, see parameter file. Its default value is False, in which case only the result from the best expected signal region (best SR) is reported.
If combineSRs = True, both the combined result and the one from the best SR are quoted.

In the figure below we show the constraints on the simplified model
T2bbWWoff [http://smodels.github.io/docs/SmsDictionary#T2bbWWoff] when using
the best signal region (left), all the 44 signal regions considered in CMS-PAS-SUS-16-052 [http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS-16-052/] (center) and the aggregated signal regions included in the SModelS database (right).
As we can see, while the curve obtained from the combination of all 44 signal regions is much closer to the official exclusion than the one obtained using only the best SR. Finally, the aggregated result included in the SModelS database (total of 17 aggregate regions) comes with little loss in constraining power, although it considerable reduces the running time.

	[image: _images/T2bbWWoff_bestSR.png]
Best signal region

	[image: _images/T2bbWWoff_44.png]
44 signal regions

	[image: _images/T2bbWWoff_17.png]
17 aggregate regions

Figure: Comparison of exclusion curves for CMS-PAS-SUS-16-052 [http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS-16-052/] using only the best signal region (left), the combination of 17 aggregate signal regions (center), and the combination of all 44 signal regions (right).

Combination of Signal Regions - Full Likelihoods (pyhf)

In early 2020, following ATL-PHYS-PUB-2019-029 [https://cds.cern.ch/record/2684863],
ATLAS has started to provide full likelihoods for results with full Run 2 luminosity (139/fb),
using a JSON serialisation of the likelihood. This JSON format describes the HistFactory [https://cds.cern.ch/record/1456844] family of statistical models, which is used by the majority of ATLAS analyses.
Thus background estimates, changes under systematic variations, and observed data counts are provided at the same fidelity as used in the experiment.

SModelS supports the usage of these JSON likelihoods from v1.2.4 onward via an interface to the
pyhf [https://scikit-hep.org/pyhf/] package, a pure-python implementation of the HistFactory statistical model. This means that for EM-type result from ATLAS, for which a JSON likelihood is available and when the combination of signal regions is turned on, the evaluation of the likelihood is relegated to pyhf [https://scikit-hep.org/pyhf/]. Internally, the whole calculation
is based on the asymptotic formulas of Asymptotic formulae for likelihood-based tests of new physics, arXiv:1007.1727 [https://arxiv.org/abs/1007.1727].

The figure below examplifies how the constraints improve from
using the best signal region (left) to using the full likelihood (right).

	[image: _images/TChiWH_bestSR.png]
Best signal region

	[image: _images/TChiWH_pyhf.png]
pyhf combining 9 signal regions

Figure: Comparison of exclusion curves for ATLAS-SUSY-2019-08 [https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-08/] using only the best signal region (left), and the combination of all 9 signal regions with pyhf (right).

	*

	The statistical significance of the exclusion statement is difficult to quantify exactly, since the model
is being tested by a large number of results simultaneously.

Topology Coverage

The constraints provided by SModelS are obviously limited
by its database and the available set of simplified model interpretations
provided by the experimental collaborations or computed by theory groups.
Therefore it is interesting to identify classes of missing simplified models
(or missing topologies) which are relevant for a given input model, but are
not constrained by the SModelS database. This task is performed
as a last step in SModelS, once the decomposition and the theory predictions
have been computed.

Given the decomposition output (list of elements), as well as the database
information, it finds and classifies the elements which are
not tested by any of the experimental results in the database.
These elements are grouped into the following classes:

	missingTopos: elements which are not tested by any of the experimental results in the database (independent of the element mass). The missing topologies are further classified as:

	longCascade: elements with long cascade decays (more than one intermediate particle in one of the branches);

	asymmetricBranches: elements where the first branch differs from the second branch (but that are not considered as long cascade decays).

	outsideGrid: elements which could be tested by one or more experimental result, but are not constrained because the mass array is outside the mass grid;

In order to classify the elements, the tool loops over all the elements found in the
decomposition and checks if they are tested by one or more experimental results in the database *.
All the elements which are not tested by any of the experimental results in the database (independent of their masses)
are added to the missingTopos class.
The remaining elements which do appear in one or more of the experimental results, but have
not been tested because their masses fall outside the efficiency or upper limit grids (see EM-type results and UL-type results),
are added to the outsideGrid class.

Usually the list of missing or outsideGrid elements is considerably long.
Hence, to compress this list, all elements differing only by their
masses (with the same final states) or electric charges are combined. Moreover, by default, electrons and muons
are combined to light leptons (denoted “l”): gluons and light quarks are combined into jets.
The missing topologies are then further classified (if applicable) into longCascade or asymmetricBranches topologies.

The topologies for each of the four categories are then grouped according to the final state (for the missingTopos and
outsideGrid classes) or according to the PDG ids of the initially produced motherparticles (for the longCascade and
asymmetricBranches classes).
We note that for the latter the elements deriving from different mother particles, but with the same final states and mass configuration cannot be distinguished, and are therefore combined in this grouping.
The full list of mother PDG id pairs can be accessed in the python printout or the comment of the text printout.

The topology coverage tool is normally called from within SModelS (e.g. when running runSModelS.py) by setting testCoverage=True
in the parameters file.
In the output, contributions in each category are ordered by cross section.
By default only the ones with the ten largest cross sections are shown.

	The topology coverage tool is implemented by the Uncovered class

	*

	If mass or invisible compression are turned on, elements which can be compressed are not considered, to avoid double counting.

Output Description

A detailed description of the possible output formats generated
by running SModelS and their content is given below.
For simplicity we will assume that all printer options
in the parameters file are set to True, so the output information is maximal *.

Screen (Stdout) Output

The stdout (or log output) is intended to provide extensive information about
the database, the decomposition, the theory predictions and the missing topologies.
It is most convenient if the input is a single file and not a folder, since the output is quite extensive.
If all the options in stdout-printer are set to True (see parameters file), the screen output contains the following information:

	information about the basic input parameters and the status of the run:

Input status: 1
Decomposition output status: 1 #decomposition was successful
Input File: inputFiles/slha/gluino_squarks.slha
maxcond = 0.2
minmassgap = 5.
ncpus = 1
sigmacut = 0.01
Database version: 1.2.0

	a list of all the experimental results considered (if printDatabase = True). Note that this list corresponds to all the results
selected in the database options (see parameters file). If addAnaInfo = True,
for each experimental result entry a list of all the simplified models (or elements) constrained by the analysis
is also shown using the bracket notation including
the Z2-odd final state class:

 ===
	Selected Experimental Results	
 ===
==
Experimental Result ID: ATLAS-SUSY-2015-01
Tx Labels: ['T2bb']
Sqrts: 1.30E+01 [TeV]

	 Elements tested by analysis:
	 [[[b]],[[b]]] (MET, MET)
==
	 [[[t,t]],[[t,t]]] (MET, MET)
==
Experimental Result ID: ATLAS-SUSY-2013-18
Tx Labels: ['T1bbbb', 'T1tttt']
Sqrts: 8.00E+00 [TeV]

	 Elements tested by analysis:
	 [[[b,b]],[[b,b]]] (MET, MET)
	 [[[t,t]],[[t,t]]] (MET, MET)
==

	a full list of the topologies generated by the decomposition (if printDecomp = True). Each topology entry
contains basic information about the topology as well as the number of elements with this topology
and the sum over all the elements weights. If addElementInfo = True, the elements belonging to each
topology are also explicitly shown, as well as the element’s mass, final states,
weight, the PIDs of the intermediate particles contributing to the element and the element ID:

 ===
	Topologies Table	
 ===
===
Topology:
Number of vertices: [0, 0]
Number of vertex parts: [[], []]
Total Global topology weight :
Sqrts: 8.00E+00 [TeV], Weight:4.81E-04 [pb]
Sqrts: 1.30E+01 [TeV], Weight:1.58E-03 [pb]

Total Number of Elements: 1
		 ...
		 Element:
		 Element ID: 1
		 Particles in element: [[], []]
		 Final states in element: ['MET', 'MET']
		 The element masses are
		 Branch 0: [1.29E+02 [GeV]]
		 Branch 1: [1.29E+02 [GeV]]

		 The element PIDs are
		 PIDs: [[1000022], [1000022]]
		 The element weights are:
 		 Sqrts: 8.00E+00 [TeV], Weight:4.81E-04 [pb]
 		 Sqrts: 1.30E+01 [TeV], Weight:1.58E-03 [pb]
 		
===
Topology:
Number of vertices: [0, 1]
Number of vertex parts: [[], [1]]
Total Global topology weight :
Sqrts: 8.00E+00 [TeV], Weight:1.16E-03 [pb]
Sqrts: 1.30E+01 [TeV], Weight:3.71E-03 [pb]

Total Number of Elements: 7
		 ...
		 Element:
		 Element ID: 2
		 Particles in element: [[], [['W+']]]
		 Final states in element: ['MET', 'MET']
		 The element masses are
		 Branch 0: [1.29E+02 [GeV]]
		 Branch 1: [2.69E+02 [GeV], 1.29E+02 [GeV]]

		 The element PIDs are
		 PIDs: [[1000022], [1000024, 1000022]]
		 The element weights are:
 		 Sqrts: 8.00E+00 [TeV], Weight:2.40E-04 [pb]
 		 Sqrts: 1.30E+01 [TeV], Weight:2.63E-04 [pb]
 		
		 ...
		 Element:
		 Element ID: 3
		 Particles in element: [[], [['W-']]]
		 Final states in element: ['MET', 'MET']
		 The element masses are
		 Branch 0: [1.29E+02 [GeV]]
		 Branch 1: [2.69E+02 [GeV], 1.29E+02 [GeV]]

		 The element PIDs are
		 PIDs: [[1000022], [-1000024, -1000022]]
		 The element weights are:
 		 Sqrts: 8.00E+00 [TeV], Weight:4.01E-05 [pb]

	a list of all the theory predictions obtained and the corresponding experimental result upper limit.
For each experimental result, the corresponding id, signal region (data set) and sqrts as well as
the constrained simplified models (txnames) are printed.
After this basic information, the signal cross section (theory prediction),
the list of condition values (if applicable) and the corresponding observed
upper limit are shown. Also, if available, the expected upper limit is included.
If computeStatistics = True, the \(\chi^2\) and likelihood values are printed
(see likelihood calculation).
Finally, if printExtendedResults = True, basic information about the elements
being constrained, such as their masses, IDs and PIDs, is also shown.

 ===
	Theory Predictions and	
	Experimental Constraints	
 ===

---------------Analysis Label = CMS-SUS-16-036
-------------------Dataset Label = (UL)
-------------------Txname Labels = ['T2']
Analysis sqrts: 1.30E+01 [TeV]
Theory prediction: 1.17E-02 [pb]
Theory conditions:[None]
Observed experimental limit: 7.68E+00 [fb]
Observed r-Value: 1.5212733123965445
Masses in branch 0: [9.91E+02 [GeV], 1.29E+02 [GeV]]
Masses in branch 1: [9.91E+02 [GeV], 1.29E+02 [GeV]]
Contributing elements: [28, 29, 30, 34, 35, 36, 37, 38, 39, 40]
PIDs:[[-2000004, -1000022], [2000004, 1000022]]
PIDs:[[-2000004, -1000022], [2000002, 1000022]]

---------------Analysis Label = CMS-SUS-16-033
-------------------Dataset Label = (UL)
-------------------Txname Labels = ['T2']
Analysis sqrts: 1.30E+01 [TeV]
Theory prediction: 1.17E-02 [pb]
Theory conditions:[None]
Observed experimental limit: 8.64E+00 [fb]
Observed r-Value: 1.35282642984693
Masses in branch 0: [9.91E+02 [GeV], 1.29E+02 [GeV]]
Masses in branch 1: [9.91E+02 [GeV], 1.29E+02 [GeV]]
Contributing elements: [28, 29, 30, 34, 35, 36, 37, 38, 39, 40]
PIDs:[[-2000004, -1000022], [2000004, 1000022]]

	summary information about the missing topologies, if testCoverage = True.
The first information corresponds to the total input cross-section considered, which corresponds
to the cross-section summed over all elements after decomposition. Note that this value
might differ from the total input model cross-section, since it includes
the lifetime reweighting and the effect of skipping elements
with a weight below the minimum decomposition weight.
The total missing topology cross section shown corresponds to the sum of cross sections
of all elements which are not tested by any experimental result.
If, however, the element is constrained by one or more experimental results, but its mass is outside the
efficiency or upper limit grids (see EM-type results and UL-type results), its cross section is included in the
total cross section outside the grid. Finally, the elements which contribute to the
total missing topology cross section are subdivided into elements with
long decays or with asymmetric branches (see coverage tool for more details)

Total cross section considered (fb): 3.635E+03
Total missing topology cross section (fb): 3.037E+03
Total cross section where we are outside the mass grid (fb): 3.376E+00
Total cross section in long cascade decays (fb): 1.317E+03
Total cross section in decays with asymmetric branches (fb): 1.686E+03

	detailed information about the missing topologies with highest cross sections.
The element cross section (weight) as well as its description in bracket notation
and BSM final state classification are included. If addCoverageID = True, all the elements IDs contributing to the missing topology are shown.
These IDs can be traced back to the corresponding elements using the decomposition information
obtained with printDecomp = True and addElementInfo = True.

==
Missing topologies with the highest cross sections (up to 10):
Sqrts (TeV) Weight (fb) Element description
 13.0 1.482E+02 # [[[jet],[W]],[[jet,jet],[W]]](MET,MET)
Contributing elements [987, 988, 989, 990, 1001, 1002, 1003, 1004, 1033, 1034, 1035, 1036, 1047, 1048, 1049, 1050, 1061, 1062, 1063, 1064, 1075, 1076, 1077, 1078]

	detailed information about the topologies which are outside the experimental results grid.
If addCoverageID = True, all the elements IDs contributing to the missing topology are shown.

==
Contributions outside the mass grid (up to 10):
Sqrts (TeV) Weight (fb) Element description
 13.0 1.438E+00 # [[[t],[W]],[[t],[W]]](MET,MET)
Contributing elements [813, 814, 815]

	information about the missing topologies with long cascade decays.
The long cascade decays are classified by the initially produced mother particles.
If more than one pair of mothers are contributing to the same class of elements, the full list is given in the comment.
For definiteness all lists are sorted.
If addCoverageID = True, all the elements IDs contributing to the missing topology are shown.

Mother1 Mother2 Weight (fb) # allMothers
1000021 2000002 3.696E+02 # [[1000021, 2000002]]
Contributing elements [1560, 1561, 1562, 1563, 1564, 1916, 1917, 1921, 1925, 1929, 1930, 1934, 1938, 1942, 1946, 1950, 1951, 1955, 1965, 1969, 1973, 1977, 1981, 1985, 1989, 1993, 1997, 2001, 2005, 2009, 2013, 2017, 2028, 2032, 2036, 2040, 2044, 2048, 2052, 2056, 2060, 2064, 2068, 2072, 2076, 2080, 2084, 2087, 2091, 2095, 2099, 2102, 2106, 2110, 2114, 2118, 2122, 2125, 2129, 2130, 3302, 3305, 3309, 3313, 3317, 3320, 3324, 3328, 3332, 3336, 3340, 3343, 3347, 3348, 3361, 3365, 3369, 3373, 3377, 3381, 3385, 3389, 3393, 3397, 3401, 3405, 3409, 3413, 3433, 3437, 3441, 3445, 3449, 3453, 3457, 3461, 3465, 3469, 3473, 3477, 3481, 3485, 3505, 3509, 3513, 3517, 3521, 3525, 3529, 3533, 3537, 3541, 3545, 3549, 3553, 3557, 3561, 3564, 3568, 3572, 3576, 3579, 3583, 3587, 3591, 3595, 3599, 3602, 3606, 3607, 3618, 3622, 3626, 3630, 3634, 3638, 3642, 3646, 3650, 3654, 3658, 3662, 3666, 3670, 3690, 3694, 3698, 3702, 3706, 3710, 3714, 3718, 3722, 3726, 3730, 3734, 3738, 3742, 3762, 3766, 3770, 3774, 3778, 3782, 3786, 3790, 3794, 3798, 3802, 3806, 3810, 3814, 3834, 3838, 3842, 3846, 3850, 3854, 3858, 3862, 3866, 3870, 3874, 3878, 3882, 3886, 3906, 3910, 3914, 3918, 3922, 3926, 3930, 3934, 3938, 3942, 3946, 3950, 3954, 3958, 3962, 3965, 3969, 3973, 3977, 3980, 3984, 3988, 3992, 3996, 4000, 4003, 4007, 4008, 4019, 4023, 4027, 4031, 4035, 4039, 4043, 4047, 4051, 4055, 4059, 4063, 4067, 4071, 4075, 4076, 4080, 4084, 4088, 4089, 4093, 4097, 4101, 4105, 4109, 4110, 4114, 4123, 4127, 4131, 4135, 4139, 4143, 4147, 4151, 4155, 4159, 4163, 4167, 4171, 4174]
1000021 2000001 2.031E+02 # [[1000021, 2000001], [1000021, 2000003]]
Contributing elements [1971, 1975, 1979, 1987, 1991, 1995, 1999, 2003, 2011, 2019, 2034, 2038, 2042, 2050, 2054, 2058, 2062, 2066, 2074, 2082, 3311, 3315, 3326, 3330, 3334, 3338, 3367, 3371, 3375, 3383, 3387, 3391, 3395, 3399, 3407, 3415, 3435, 3439, 3443, 3447, 3455, 3459, 3463, 3467, 3471, 3479, 3487, 3507, 3511, 3515, 3519, 3527, 3531, 3535, 3539, 3543, 3551, 3559, 3624, 3628, 3632, 3640, 3644, 3648, 3652, 3656, 3664, 3672, 3692, 3696, 3700, 3704, 3712, 3716, 3720, 3724, 3728, 3736, 3744, 3764, 3768, 3772, 3776, 3784, 3788, 3792, 3796, 3800, 3808, 3816, 3836, 3840, 3844, 3848, 3856, 3860, 3864, 3868, 3872, 3880, 3888, 3908, 3912, 3916, 3920, 3928, 3932, 3936, 3940, 3944, 3952, 3960, 4025, 4029, 4033, 4041, 4045, 4049, 4053, 4057, 4065, 4073, 4129, 4133, 4137, 4145, 4149, 4153, 4157, 4161, 4169, 1919, 1923, 1927, 1932, 1936, 1940, 1944, 1948, 1953, 1957, 1967, 1983, 2007, 2015, 2030, 2046, 2070, 2078, 2086, 2089, 2093, 2097, 2101, 2104, 2108, 2112, 2116, 2120, 2124, 2127, 2132, 3304, 3307, 3319, 3322, 3342, 3345, 3350, 3363, 3379, 3403, 3411, 3451, 3475, 3483, 3523, 3547, 3555, 3563, 3566, 3570, 3574, 3578, 3581, 3585, 3589, 3593, 3597, 3601, 3604, 3609, 3620, 3636, 3660, 3668, 3708, 3732, 3740, 3780, 3804, 3812, 3852, 3876, 3884, 3924, 3948, 3956, 3964, 3967, 3971, 3975, 3979, 3982, 3986, 3990, 3994, 3998, 4002, 4005, 4010, 4021, 4037, 4061, 4069, 4078, 4082, 4086, 4091, 4095, 4099, 4103, 4107, 4112, 4116, 4125, 4141, 4165, 4173, 4176]

	information about the missing topologies with asymmetric decays.
The asymmetric branch decays are classified by the initially produced mother particles.
If more than one pair of mothers are contributing to the same class of elements, the full list is given in the comment.
For definiteness all lists are sorted.
If addCoverageID = True, all the elements IDs contributing to the missing topology are shown.

Mother1 Mother2 Weight (fb) # allMothers
1000021 1000021 5.297E+02 # [[1000021, 1000021]]
Contributing elements [565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, 1453, 1454, 1455, 1456, 1457, 1458, 1459, 1460, 1461, 1462, 1464, 1465, 1466, 1467, 1468, 1470, 1471, 1472, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1486, 1487, 1488, 1489, 1493, 1494, 1495, 1496, 1499, 1500, 1501, 1502, 1504, 1505, 1506, 1507, 1509, 1510, 1511, 1513, 1514, 1516]
1000002 1000021 4.149E+02 # [[1000002, 1000021], [1000004, 1000021]]
Contributing elements [466, 478, 480, 492, 494, 504, 506, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1068, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 468, 470, 472, 482, 484, 496, 498, 508, 510, 514, 518, 523, 527, 531, 535, 539, 543, 547, 551, 556, 560, 1067, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1265, 1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 477, 491, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026]

Log Output

The log-type output is identical to the screen output, except that it is
redirected to a .log file. The filename is set as the <input file>.log and stored in the output folder
(see the runSModelS options).

Summary File Output

The summary-type output is similar to the screen output, but restricted
to the list of theory predictions and model coverage.
The output is printed to the file <input file>.smodels and stored in the output folder
(see the runSModelS options).

Below we describe in detail the blocks contained in the summary output:

	information about the basic input parameters and the status of the run:

Input status: 1
Decomposition output status: 1 #decomposition was successful
Input File: inputFiles/slha/gluino_squarks.slha
maxcond = 0.2
minmassgap = 5.
ncpus = 1
sigmacut = 0.01
Database version: 1.2.0

	a list of all the theory predictions obtained and the corresponding experimental result upper limit.
If expandedSummary = False only the most constraining experimental result is printed.
For each theory prediction entry, the corresponding experimental result id, the signal region (data set) used (only for EM-type results)
and the experimental result sqrts is printed. Furthermore, the txnames contributing to the signal cross section, the
theory cross section (Theory_Value), the observed upper limit (Exp_limit),
the (theory cross section)/(observed upper limit) ratio (r) and, when available,
the (theory cross section)/(expected upper limit) ratio (r_expect) are also printed.
For UL-type results the condition violation (see upper limit conditions) is also included.
Finally, if computeStatistics = True, the \(\chi^2\) and likelihood values (for EM-type results) are printed:

#Analysis Sqrts Cond_Violation Theory_Value(fb) Exp_limit(fb) r r_expected

 CMS-SUS-16-036 1.30E+01 0.0 1.169E+01 7.683E+00 1.521E+00 N/A
 Signal Region: (UL)
 Txnames: T2
--
 CMS-SUS-16-033 1.30E+01 0.0 1.169E+01 8.639E+00 1.353E+00 N/A
 Signal Region: (UL)
 Txnames: T2
--
 ATLAS-SUSY-2013-02 8.00E+00 0.0 6.270E-01 1.818E+00 3.449E-01 4.146E-01
 Signal Region: SR2jt
 Txnames: T1, T2
 Chi2, Likelihood = 1.302E-01 1.276E-03

	the maximum value for the (theory cross section)/(observed upper limit) ratio. If this value is
higher than 1 the input model is likely excluded by one of the experimental results (see confronting predictions)

==
The highest r value is = 1.5212733123965445

	summary information about the missing topologies, if testCoverage = True.
The first information corresponds to the total input cross-section considered, which corresponds
to the cross-section summed over all elements after decomposition. Note that this value
might differ from the total input model cross-section, since it includes
the lifetime reweighting and the effect of skipping elements
with a weight below the minimum decomposition weight.
The total missing topology cross section
corresponds to the sum of all elements cross sections which are not tested by any experimental result.
If, however, the element is constrained by one or more experimental results, but its mass is outside the
efficiency or upper limit grids (see EM-type results and UL-type results), its cross section is included in the
total cross section outside the grid. Finally, the elements which contribute to the
total missing topology cross section are subdivided into elements with
long decays or with asymmetric branches (see coverage tool for more details)

Total cross section considered (fb): 3.635E+03
Total missing topology cross section (fb): 3.037E+03
Total cross section where we are outside the mass grid (fb): 3.376E+00
Total cross section in long cascade decays (fb): 1.317E+03
Total cross section in decays with asymmetric branches (fb): 1.686E+03

	detailed information about the missing topologies with highest cross sections.
The element cross section (weight) as well as its description in bracket notation
and final states is included.

==
Missing topologies with the highest cross sections (up to 10):
Sqrts (TeV) Weight (fb) Element description
 13.0 1.482E+02 # [[[jet],[W]],[[jet,jet],[W]]](MET,MET)
 13.0 1.445E+02 # [[[jet,jet],[W]],[[jet],[jet,jet],[W]]](MET,MET)

	detailed information about the topologies which are outside the experimental results grid:

==
Contributions outside the mass grid (up to 10):
Sqrts (TeV) Weight (fb) Element description
 13.0 1.438E+00 # [[[t],[W]],[[t],[W]]](MET,MET)
 13.0 2.871E-01 # [[[b],[higgs]],[[b],[higgs]]](MET,MET)

	information about the missing topologies with long cascade decays:

Missing topos: long cascade decays (up to 10 entries), sqrts = 13 TeV:
Mother1 Mother2 Weight (fb) # allMothers
1000021 2000002 3.696E+02 # [[1000021, 2000002]]
1000021 2000001 2.031E+02 # [[1000021, 2000001], [1000021, 2000003]]
1000002 1000021 1.612E+02 # [[1000002, 1000021]]

	information about the missing topologies with asymmetric decays:

Missing topos: asymmetric branches (w/o long cascades, up to 10), sqrts = 13 TeV
Mother1 Mother2 Weight (fb) # allMothers
1000021 1000021 5.297E+02 # [[1000021, 1000021]]
1000002 1000021 4.149E+02 # [[1000002, 1000021], [1000004, 1000021]]
1000021 2000002 2.134E+02 # [[1000021, 2000002]]

Python Output

The Python-type output is similar to the screen output, however
converted to a Python dictionary. If all options are set to True,
it includes information about the decomposition, the list of theory predictions and model coverage.
The output is printed to the file <input file>.py and stored in the output folder
(see the runSModelS options).

Below we describe in detail the dictionary keys and values contained in the Python dictionary output:

	information about the basic input parameters and the status of the run stored under the OutputStatus key:

smodelsOutput = {
'OutputStatus': {'sigmacut': 0.01, 'minmassgap': 5.0, 'maxcond': 0.2, 'ncpus': 1, 'file status': 1, 'decomposition status': 1, 'warnings': 'Input fil

	a full list of the elements generated by the decomposition (if addElementList = True) stored
under the Element key. Each list entry contains basic information about the elements.
The list can be considerably long, so it is recommended to
set addElementList to False, unless the decomposition information is required by the user.

 'Element': [{'ID': 1, 'Particles': '[[], []]', 'Masses (GeV)': [[129.0], [129.0]], 'PIDs': [[[1000022], [1000022]]], 'Weights (fb)': {'xsec 8.0 TeV': 0.480, 'xsec 13.0 TeV': 1.580}, 'final states': ['MET', 'MET']},
{'ID': 2, 'Particles': "[[], [['W+']]]", 'Masses (GeV)': [[129.0], [269.0,129.0]], 'PIDs': [[[1000022], [1000024, 1000022]]], 'Weights (fb)': {'xsec 8.0 TeV': 0.2404, 'xsec 13.0 TeV': 0.263}, 'final states': ['MET', 'MET']},..]

	a list of all the theory predictions obtained for the experimental results, stored under the ExptRes key.
For each list entry, the corresponding result id, the experimental result type (if UL-type result or EM-type result),
the signal region (data set ID), the sqrts and luminosity, the constrained simplified models (txnames),
the signal cross section (theory prediction), the corresponding observed
upper limit and the maximum condition violation (see upper limit conditions) are shown.
The masses of the elements contributing to the signal cross section (if unique) and the \(\chi^2\)
likelihood values (if computeStatistics = True) are also included. Finally, if addTxWeights = True,
the weight contribution of each txname is also included:

'ExptRes': [{'maxcond': 0.0, 'theory prediction (fb)': 11.68725, 'upper limit (fb)': 7.68,
'expected upper limit (fb)': None, 'TxNames': ['T2'], 'Mass (GeV)': [[991.3084, 129.0], [991.4, 129.0]],
'AnalysisID': 'CMS-SUS-16-036', 'DataSetID': None, 'AnalysisSqrts (TeV)': 13.0,
'lumi (fb-1)': 35.9, 'dataType': 'upperLimit',
'r': 1.52127, 'r_expected': None, 'TxNames weights (fb)': {'T2': 11.687}},...]

	a list of missing topologies (if testCoverage = True), stored under the Missed Topologies key.
For each list entry, the element cross section (weight), the element IDs contributing to the topology and the element
description in bracket notation and final states is included.

'Missed Topologies': [{'sqrts (TeV)': 13.0, 'weight (fb)': 148.16,
'element': "[[[jet],[W]],[[jet,jet],[W]]](MET,MET)", 'element IDs': [987, 988,...]},...]

	a list of topologies which are outside the experimental results grid (if testCoverage = True),
stored under the Outside Grid key.
For each list entry, the element cross section (weight)
and the element description in bracket notation and final states is included.

'Outside Grid': [{'sqrts (TeV)': 13.0, 'weight (fb)': 1.58, 'element': "[[[jet]],[[t,t]]](MET,MET)"},...]

	a list of topologies with long cascade decays (if testCoverage = True),
stored under the Long Cascades key.
For each list entry, the element cross section (weight) and the PIDs of the mothers are included.
The mother PIDs are given in a nested list, as more than one pair might contribute to the same class of elements.

'Long Cascades': [{'sqrts (TeV)': 13.0, 'weight (fb)': 369.58, 'mother PIDs': [[1000021, 2000002]]},...]

	a list of topologies with asymmetric branch decays (if testCoverage = True),
stored under the Asymmetric Branches key.
For each list entry, the element cross section (weight) and the PIDs of the mothers are included.
The mother PIDs are given in a nested list, as more than one pair might contribute to the same class of elements.

'Asymmetric Branches': [{'sqrts (TeV)': 13.0, 'weight (fb)': 529.73, 'mother PIDs': [[1000021, 1000021]]},...]

XML Output

The xml-type output is identical to the python output, however
converted to a xml format. The output is printed to the file <input file>.xml and stored in the output folder
(see the runSModelS options).

Since the output information and options are the same as described for python output,
we simply show below an excerpt of the xml file to illustrate the output format:

<?xml version="1.0" ?>
<smodelsOutput>
 <Element_List>
 <Element>
 <ID>1</ID>
 <Masses_GeV_List>
 <Masses_GeV_List>
 <Masses_GeV>129.0</Masses_GeV>
 </Masses_GeV_List>
 <Masses_GeV_List>
 <Masses_GeV>129.0</Masses_GeV>
 </Masses_GeV_List>
 </Masses_GeV_List>
 <PIDs_List>
 <PIDs_List>
 <PIDs_List>
 <PIDs>1000022</PIDs>
 </PIDs_List>
 <PIDs_List>
 <PIDs>1000022</PIDs>
 </PIDs_List>
 </PIDs_List>
 </PIDs_List>
 <Particles>[[], []]</Particles>
 <Weights_fb>
 <xsec_13.0_TeV>1.5801581999999998</xsec_13.0_TeV>
 <xsec_8.0_TeV>0.48082062600000003</xsec_8.0_TeV>
 </Weights_fb>
 <final_states_List>
 <final_states>MET</final_states>
 <final_states>MET</final_states>
 </final_states_List>
 </Element>
 <ExptRes_List>
 <ExptRes>
 <AnalysisID>CMS-SUS-16-036</AnalysisID>
 <AnalysisSqrts_TeV>13.0</AnalysisSqrts_TeV>
 <DataSetID>None</DataSetID>
 <Mass_GeV_List>
 <Mass_GeV_List>
 <Mass_GeV>991.3084550191742</Mass_GeV>
 <Mass_GeV>129.0</Mass_GeV>
 </Mass_GeV_List>
 <Mass_GeV_List>
 <Mass_GeV>991.4592631024188</Mass_GeV>
 <Mass_GeV>129.0</Mass_GeV>
 </Mass_GeV_List>
 </Mass_GeV_List>
 <TxNames_List>
 <TxNames>T2</TxNames>
 </TxNames_List>
 <TxNames_weights_fb>
 <T2>11.687259769407873</T2>
 </TxNames_weights_fb>
 <dataType>upperLimit</dataType>
 <expected_upper_limit_fb>None</expected_upper_limit_fb>
 <lumi_fb-1>35.9</lumi_fb-1>
 <maxcond>0.0</maxcond>
 <r>1.5212733123965445</r>
 <r_expected>None</r_expected>
 <theory_prediction_fb>11.687259769407875</theory_prediction_fb>
 <upper_limit_fb>7.682550975009415</upper_limit_fb>
 </ExptRes>

SLHA Output

An SLHA-type output format is also available containing a summary of
the theory predictions and missing topologies.
The file contains the SLHA-type blocks: SModelS_Settings, SModelS_Exclusion,
SModelS_Missing_Topos, SModelS_Outside_Grid, SModelS_Long_Cascade and SModelS_Asymmetric_Branches.
Below we give a description of each block together with a sample output.

	information about the main input parameters:

BLOCK SModelS_Settings
 0 v1.2.0 #SModelS version
 1 1.2.0 #database version
 2 0.2 #maximum condition violation
 3 1 #compression (0 off, 1 on)
 4 5. #minimum mass gap for mass compression [GeV]
 5 0.01 #sigmacut [fb]

	information about the status of the input model: excluded (1), not excluded (0) or not tested (-1):

BLOCK SModelS_Exclusion
 0 0 1 #output status (-1 not tested, 0 not excluded, 1 excluded)

	followed by the list of experimental results. If the model is excluded, all results with \(r\)-value greater
than one are shown. If the point is not excluded, only the result with the highest \(r\)-value is displayed.
For each experimental result, the Txname, the \(r\)-value,
the condition violation and the experimental result ID are shown.
If computeStatistics = True, the \(\chi^2\) and likelihood values
for EM-type results are also printed:

 1 0 T2 #txname
 1 1 1.521E+00 #r value
 1 2 1.521E+00 #expected r value
 1 3 0.00 #condition violation
 1 4 CMS-SUS-16-036 #analysis
 1 5 (UL) #signal region
 1 6 N/A #Chi2
 1 7 N/A #Likelihood

	a list of missing topologies (up to 10) and their weights (if testCoverage = True):

BLOCK SModelS_Missing_Topos #sqrts[TeV] weight[fb] description
 0 13 1.482E+02 [[[jet],[W]],[[jet,jet],[W]]] ('MET', 'MET')
 1 13 1.445E+02 [[[jet,jet],[W]],[[jet],[jet,jet],[W]]] ('MET', 'MET')
 2 13 1.047E+02 [[[b,t],[W]],[[jet,jet],[W]]] ('MET', 'MET')

	a list of topologies which are outside the experimental results grid (if testCoverage = True):

BLOCK SModelS_Outside_Grid #sqrts[TeV] weight[fb] description
 0 13 1.590E+00 [[[jet]],[[t,t]]] ('MET', 'MET')
 1 13 1.438E+00 [[[t],[W]],[[t],[W]]] ('MET', 'MET')

	a list of topologies with long cascade decays (if testCoverage = True):

BLOCK SModelS_Asymmetric_Branches #Mother1 Mother2 Weight[fb] allMothers
 0 1000021 1000021 5.297E+02 [[1000021,1000021]]
 1 1000002 1000021 4.149E+02 [[1000002,1000021],[1000004,1000021]]

	a list of topologies with asymmetric branch decays (if testCoverage = True):

 9 13 6.214E+01 [[[jet],[W]],[[jet,jet],[higgs]]] ('MET', 'MET')

BLOCK SModelS_Outside_Grid #sqrts[TeV] weight[fb] description
 0 13 1.590E+00 [[[jet]],[[t,t]]] ('MET', 'MET')

	*

	Some of the output may change depending on the database version used.

How To’s

Below we provide a few examples for using SModelS and some of the SModelS tools as a Python library *.

To try out the examples in interactive mode: [image: binder] [https://mybinder.org/v2/gh/SModelS/smodels/master?filepath=docs%2Fmanual%2Fsource%2Frecipes%2F]

Main examples:

	How to run SModelS using a parameter file (download the Python code here, IPython notebook here)

	How to run SModelS as a python library (download the Python code here, IPython notebook here)

Examples displaying several functionalities:

	How to load the database (download the Python code here, IPython notebook here)

	How to obtain experimental upper limits (download the Python code here, IPython notebook here)

	How to obtain experimental efficiencies (download the Python code here, IPython notebook here)

	How to print decomposition results (download the Python code here, IPython notebook here)

	How to print theory predictions (download the Python code here, IPython notebook here)

	How to compare theory predictions with experimental limits (download the Python code here, IPython notebook here)

	How to compute the likelihood and chi2 for a theory predictions (download the Python code here, IPython notebook here)

	How to find missing topologies (download the Python code here, IPython notebook here)

	How to generate ascii graphs (download the Python code here, IPython notebook here)

	How to marginalize a combined limit instead of profiling it (download the Python code here, IPython notebook here)

Examples using the cross-section computer:

	How to compute leading order cross sections (for MSSM) (download the Python code here, IPython notebook here)

	How to compute next-to-leading order cross sections (for MSSM) (download the Python code here, IPython notebook here)

Examples using the Database Browser

	How to obtain upper limits (download the Python code here, IPython notebook here)

	How to select specific results (download the Python code here, IPython notebook here)

Examples using the Interactive Plots tool

	How to make interactive plots (download the Python code here, IPython notebook here)

	*

	Some of the output may change depending on the database version used.

SModelS Code Documentation

These pages constitute the SModelS code documentation.

Contents

	theory package
	Submodules

	theory.auxiliaryFunctions module

	theory.branch module

	theory.clusterTools module

	theory.crossSection module

	theory.element module

	theory.exceptions module

	theory.lheDecomposer module

	theory.lheReader module

	theory.particleNames module

	theory.slhaDecomposer module

	theory.theoryPrediction module

	theory.topology module

	Module contents

	experiment package
	Submodules

	experiment.databaseObj module

	experiment.datasetObj module

	experiment.exceptions module

	experiment.expResultObj module

	experiment.infoObj module

	experiment.metaObj module

	experiment.txnameObj module

	Module contents

	tools package
	Submodules

	tools.asciiGraph module

	tools.caching module

	tools.colors module

	tools.coverage module

	tools.crashReport module

	tools.databaseBrowser module

	tools.externalPythonTools module

	tools.interactivePlots module

	tools.interactivePlotsHelpers module

	tools.ioObjects module

	tools.lheChecks module

	tools.modelTester module

	tools.nllFastWrapper module

	tools.physicsUnits module

	tools.printer module

	tools.pyhfInterface module

	tools.pythia6Wrapper module

	tools.pythia8Wrapper module

	tools.pythia8particles module

	tools.runSModelS module

	tools.runtime module

	tools.simplifiedLikelihoods module

	tools.slhaChecks module

	tools.smodelsLogging module

	tools.smodelsTools module

	tools.stringTools module

	tools.timeOut module

	tools.toolBox module

	tools.wrapperBase module

	tools.xsecComputer module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

theory package

Submodules

theory.auxiliaryFunctions module

	
theory.auxiliaryFunctions.cGtr(weightA, weightB)

	Define the auxiliary greater function.

Return a number between 0 and 1 depending on how much it is violated
(0 = A > B, 1 = A << B).

	Returns

	XSectioList object with the values for each label.

	
theory.auxiliaryFunctions.cSim(*weights)

	Define the auxiliar similar function.

Return the maximum relative difference between any element weights of the
list, normalized to [0,1].

	Returns

	XSectionList object with the values for each label.

	
theory.auxiliaryFunctions.distance(xmass1, xmass2)

	Define distance between two mass positions in upper limit space.
The distance is defined as d = 2*|xmass1-xmass2|/(xmass1+xmass2).

	Parameters

	
	xmass1 – upper limit value (in fb) for the mass1

	xmass2 – upper limit value (in fb) for the mass2

	Returns

	relative mass distance in upper limit space

	
theory.auxiliaryFunctions.index_bisect(inlist, el)

	Return the index where to insert item el in inlist.
inlist is assumed to be sorted and a comparison function (lt or cmp)
must exist for el and the other elements of the list.
If el already appears in the list, inlist.insert(el) will
insert just before the leftmost el already there.

	
theory.auxiliaryFunctions.massAvg(massList, method='weighted', weights=None)

	Compute the average mass of massList according to method.

If method=weighted but weights were not properly defined,
switch method to harmonic.
If massList contains a zero mass, switch method to mean.

	Parameters

	
	method – possible values: harmonic, mean, weighted

	weights – weights of elements (only for weighted average)

	
theory.auxiliaryFunctions.massPosition(mass, txdata)

	Give mass position in upper limit space.
Use the analysis experimental limit data.
:param txdata: TxNameData object holding the data and interpolation

theory.branch module

	
class theory.branch.Branch(info=None, finalState=None)

	Bases: object

An instance of this class represents a branch.
A branch-element can be constructed from a string (e.g., (‘[b,b],[W]’).

	Variables

	
	masses – list of masses for the intermediate states

	particles – list of particles (strings) for the final states

	PIDs – a list of the pdg numbers of the intermediate states appearing in the branch.
If the branch represents more than one possible pdg list, PIDs will correspond
to a nested list (PIDs = [[pid1,pid2,…],[pidA,pidB,…])

	maxWeight – weight of the branch (XSection object)

	
copy()

	Generate an independent copy of self.
Faster than deepcopy.

	Returns

	Branch object

	
decayDaughter(brDictionary, massDictionary)

	Generate a list of all new branches generated by the 1-step cascade
decay of the current branch daughter.

	Parameters

	
	brDictionary – dictionary with the decay information
for all intermediate states (values are br objects, see pyslha)

	massDictionary – dictionary containing the masses for all intermediate states.

	Returns

	list of extended branches (Branch objects). Empty list if daughter is stable or
if daughterID was not defined.

	
getInfo()

	Get branch topology info from particles.

	Returns

	dictionary containing vertices and number of final states information

	
getLength()

	Returns the branch length (number of R-odd particles).

	Returns

	length of branch (number of R-odd particles)

	
particlesMatch(other)

	Compare two Branches for matching particles,
allow for inclusive particle labels (such as the ones defined in particles.py).
Includes the final state in the comparison.

	Parameters

	other – branch to be compared (Branch object)

	Returns

	True if branches are equal (particles and masses match); False otherwise.

	
setFinalState(finalState=None)

	If finalState = None, define the branch final state according to the PID of the
last R-odd particle appearing in the cascade decay.
Else set the final state to the finalState given
:parameter finalState: String defining the final state

	
setInfo()

	Defines the number of vertices (vertnumb) and number of
particles in each vertex (vertpats) properties, if they have not
been defined yet.

	
sortParticles()

	Sort the particles inside each vertex

	
class theory.branch.InclusiveBranch

	Bases: theory.branch.Branch

A branch wildcard class. It will return True when compared to any other branch object
with the same final state.

	
getInfo()

	Get branch topology info from particles.

	Returns

	dictionary containing vertices and number of final states information

	
class theory.branch.InclusiveInt

	Bases: int

A integer wildcard class. It will return True when compared to any other integer object.

	
class theory.branch.InclusiveList

	Bases: list

A list wildcard class. It will return True when compared to any other list object.

	
theory.branch.decayBranches(branchList, brDictionary, massDictionary, sigcut=0.00E+00 [fb])

	Decay all branches from branchList until all unstable intermediate states have decayed.

	Parameters

	
	branchList – list of Branch() objects containing the initial mothers

	brDictionary –
	dictionary with the decay information

	for all intermediate states (values are br objects, see pyslha).

It may also contain information about long-lived particles.

	massDictionary – dictionary containing the masses for all intermediate states.

	promptDictionary – optional dictionary with the fraction of prompt and non-prompt decays.
Allows to deal with quasi-stable or long-lived particles
If not given, all particles are considered to
always decay promptly or to be stable.

	sigcut – minimum sigma*BR to be generated, by default sigcut = 0.
(all branches are kept)

	Returns

	list of branches (Branch objects)

theory.clusterTools module

	
class theory.clusterTools.ElementCluster

	Bases: object

An instance of this class represents a cluster.
This class is used to store the relevant information about a cluster of
elements and to manipulate this information.

	Variables

	elements – list of elements in the cluster (Element objects)

	
getAvgMass()

	Return the average mass of all elements belonging to the cluster.
If the cluster does not refer to a TxName (i.e. in efficiency map results)
AND the cluster contains more than one element (assuming they differ in
the masses), returns None.

	Returns

	average mass array

	
getDataType()

	Checks to which type of data (efficiency map or upper limit)
the cluster refers to. It uses the cluster.txnames attribute.
If not defined, returns None
:return: upperLimits or efficiencyMap (string)

	
getIDs()

	Return list of all element IDs appearing in the cluster
:return: list of element IDs

	
getPIDs()

	Return the list of all PIDs appearing in all elements in the cluster,
i.e. [[[pdg1, pdg2,…],[pdg3,pdg4,…]], [[pdg1’, pdg2’,…],[pdg3’,pdg4’,…]]

	Returns

	list of PIDs

	
getTotalXSec()

	Return the sum over the cross sections of all elements belonging to
the cluster.

	Returns

	sum of weights of all the elements in the cluster (XSectionList object)

	
class theory.clusterTools.IndexCluster(massMap=None, posMap=None, wMap=None, indices={}, txdata=None)

	Bases: object

An instance of this class represents a cluster storing element indices.
This auxiliary class is used to store element indices and positions in
upper limit space. It is only used by the clustering algorithm.

	Variables

	
	indices – list of integers mapping the cluster elements to their position in the list
(1st element -> index 0, 2nd element -> index 1,…)

	avgPosition – position in upper limit space for the cluster average mass

	massMap – dictionary with indices as keys and the corresponding element mass as values

	positionMap – dictionary with indices as keys and the corresponding element position
in upper limit space as values

	weightMap – dictionary with indices as keys and the corresponding element weight
as values

	txdata – TxNameData object to be used for computing distances in UL space

	
add(iels)

	Add an index or a list of indices to the list of indices and update
the avgPosition value.

	
copy()

	Returns a copy of the index cluster (faster than deepcopy).

	
remove(iels)

	Remove an index or a list of indices to the list of indices and
update the avgPosition value.

	
theory.clusterTools.clusterElements(elements, maxDist)

	Cluster the original elements according to their mass distance.

	Parameters

	
	elements – list of elements (Element objects)

	txname – TxName object to be used for computing distances in UL space

	maxDist – maximum mass distance for clustering two elements

	Returns

	list of clusters (ElementCluster objects)

	
theory.clusterTools.groupAll(elements)

	Create a single cluster containing all the elements.
Skip mother elements which contain the daughter in the list (avoids double counting).

	Parameters

	elements – List of Element objects

	Returns

	ElementCluster object containing all unique elements

theory.crossSection module

	
class theory.crossSection.XSection

	Bases: object

An instance of this class represents a cross section.

This class is used to store the information of a single cross section
(value, paritcle ids, center of mass, order and label).

order = 0 (LO), 1 (NLO) or 2 (NLL).

	
copy()

	Generates an independent copy of self.

Faster than deepcopy.

	
niceStr()

	Generates a more human readable string. The string format is:
Sqrts: self.info.sqrts, Weight: self.value

	
pid

	

	
class theory.crossSection.XSectionInfo(sqrts=None, order=None, label=None)

	Bases: object

An instance of this class represents information regarding a cross section.

This class is used to store information of a cross section (center of
mass, order and label).

	
copy()

	Generate an independent copy of self.

Faster than deepcopy.

	
class theory.crossSection.XSectionList(infoList=None)

	Bases: object

An instance of this class represents a list of cross sections.

This class is used to store a list of cross sections.
The list is sorted by cross section, highest cross section first.

	
add(newxsec)

	Append a XSection object to the list.

	
combineWith(newXsecs)

	Add a new list of cross sections.

If the new cross sections already appear (have same order and sqrts),
add its value to the original value, otherwise append it to the list.
The particle IDs are ignored when adding cross sections. Hence, they
are set to (None, None) if any cross sections are combined.

	
copy()

	Generates an independent copy of itself. Faster than deepcopy.

	
delete(xSec)

	Delete the cross section entry from the list.

	
getDictionary(groupBy='pids')

	Convert the list of XSection objects to a nested dictionary.

First level keys are the particles IDs (if groupBy == pids) or labels
(if groupBy == labels) and values are the cross section labels or
particle IDs and the cross section value.

	
getInfo()

	Get basic info about the cross sections appearing in the list (order,
value and label).

	Returns

	list of XSectionInfo objects

	
getMaxXsec()

	Get the maximum cross section value appearing in the list.

	
getMinXsec()

	Get minimum cross section value appearing in the list.

	
getPIDpairs()

	Get all particle ID pairs appearing in the list.

	
getPIDs()

	Get all particle IDs appearing in the list.

	
getXsecsFor(item)

	Return a list of XSection objects for item (label, pid, sqrts).

	
niceStr()

	

	
order()

	Order the cross section in the list by their PDG pairs

	
removeLowerOrder()

	Keep only the highest order cross section for each process in the list.

Remove order information and set default labels.

	
sort()

	sort the xsecs by the values

	
theory.crossSection.getXsecFromLHEFile(lhefile, addEvents=True)

	Obtain cross sections from input LHE file.

	Parameters

	
	lhefile – LHE input file with unweighted MC events

	addEvents – if True, add cross sections with the same mothers,
otherwise return the event weight for each pair of mothers

	Returns

	a XSectionList object

	
theory.crossSection.getXsecFromSLHAFile(slhafile, useXSecs=None, xsecUnit=1.00E+00 [pb])

	Obtain cross sections for pair production of R-odd particles from input SLHA file.
The default unit for cross section is pb.

	Parameters

	
	slhafile – SLHA input file with cross sections

	useXSecs – if defined enables the user to select cross sections to
use. Must be a XSecInfoList object

	xsecUnit – cross section unit in the input file (must be a Unum unit)

	Returns

	a XSectionList object

theory.element module

	
class theory.element.Element(info=None, finalState=None)

	Bases: object

An instance of this class represents an element.
This class possesses a pair of branches and the element weight
(cross-section * BR).

	Variables

	
	branches – list of branches (Branch objects)

	weight – element weight (cross-section * BR)

	motherElements – only for elements generated from a parent element
by mass compression, invisible compression,etc.
Holds a pair of (whence, mother element), where
whence describes what process generated the element

	
checkConsistency()

	Check if the particles defined in the element exist and are consistent
with the element info.

	Returns

	True if the element is consistent. Print error message
and exits otherwise.

	
combineMotherElements(el2)

	Combine mother elements from self and el2 into self

	Parameters

	el2 – element (Element Object)

	
combinePIDs(el2)

	Combine the PIDs of both elements. If the PIDs already appear in self,
do not add them to the list.

	Parameters

	el2 – element (Element Object)

	
compressElement(doCompress, doInvisible, minmassgap)

	Keep compressing the original element and the derived ones till they
can be compressed no more.

	Parameters

	
	doCompress – if True, perform mass compression

	doInvisible – if True, perform invisible compression

	minmassgap – value (in GeV) of the maximum
mass difference for compression
(if mass difference < minmassgap, perform mass compression)

	Returns

	list with the compressed elements (Element objects)

	
copy()

	Create a copy of self.
Faster than deepcopy.

	Returns

	copy of element (Element object)

	
getDaughters()

	Get a pair of daughter IDs (PDGs of the last intermediate
state appearing the cascade decay), i.e. [[pdgLSP1,pdgLSP2]]
Can be a list, if the element combines several daughters:
[[pdgLSP1,pdgLSP2], [pdgLSP1’,pdgLSP2’]]

	Returns

	list of PDG ids

	
getEinfo()

	Get element topology info from branch topology info.

	Returns

	dictionary containing vertices and number of final states information

	
getFinalStates()

	Get the array of particles in the element.

	Returns

	list of particle strings

	
getMasses()

	Get the array of masses in the element.

	Returns

	list of masses (mass array)

	
getMothers()

	Get a pair of mother IDs (PDGs of the first intermediate
state appearing the cascade decay), i.e. [[pdgMOM1,pdgMOM2]]
Can be a list, if the element combines several mothers:
[[pdgMOM1,pdgMOM2], [pdgMOM1’,pdgMOM2’]]

	Returns

	list of PDG ids

	
getPIDs()

	Get the list of IDs (PDGs of the intermediate states appearing the cascade decay), i.e.
[[[pdg1,pdg2,…],[pdg3,pdg4,…]]].
The list might have more than one entry if the element combines different pdg lists:
[[[pdg1,pdg2,…],[pdg3,pdg4,…]], [[pdg1’,pdg2’,…],[pdg3’,pdg4’,…]], …]

	Returns

	list of PDG ids

	
getParticles()

	Get the array of particles in the element.

	Returns

	list of particle strings

	
hasTopInList(elementList)

	Check if the element topology matches any of the topologies in the
element list.

	Parameters

	elementList – list of elements (Element objects)

	Returns

	True, if element topology has a match in the list, False otherwise.

	
invisibleCompress()

	Perform invisible compression.

	Returns

	compressed copy of the element, if element ends with invisible
particles; None, if compression is not possible

	
massCompress(minmassgap)

	Perform mass compression.

	Parameters

	minmassgap – value (in GeV) of the maximum
mass difference for compression
(if mass difference < minmassgap -> perform mass compression)

	Returns

	compressed copy of the element, if two masses in this
element are degenerate; None, if compression is not possible;

	
particlesMatch(other, branchOrder=False)

	Compare two Elements for matching particles only.
Allow for inclusive particle labels (such as the ones defined in particles.py)
and includes final state comparison.
If branchOrder = False, check both branch orderings.

	Parameters

	
	other – element to be compared (Element object)

	branchOrder – If False, check both orderings, otherwise
check the same branch ordering

	Returns

	True, if particles match; False, else;

	
setFinalState(finalStates)

	If finalStates = None, define the element final states according to the PID of the
last R-odd particle appearing in the cascade decay.
Else set the final states according to the finalStates list (must
match the branch ordering)

	Parameters

	finalStates – List with final state labels (must match the branch ordering)

	
setMasses(mass, sameOrder=True, opposOrder=False)

	Set the element masses to the input mass array.

	Parameters

	
	mass – list of masses ([[masses for branch1],[masses for branch2]])

	sameOrder – if True, set the masses to the same branch ordering
If True and opposOrder=True, set the masses to the
smaller of the two orderings.

	opposOrder – if True, set the masses to the opposite branch ordering.
If True and sameOrder=True, set the masses to the
smaller of the two orderings.

	
sortBranches()

	Sort branches. The smallest branch is the first one.
See the Branch object for definition of branch size and comparison

	
switchBranches()

	Switch branches, if the element contains a pair of them.

	Returns

	element with switched branches (Element object)

	
toStr()

	Returns a string with the element represented in bracket notation,
including the final states, e.g. [[[jet]],[[jet]] (MET,MET)

theory.exceptions module

	
exception theory.exceptions.SModelSTheoryError(value=None)

	Bases: Exception

Class to define SModelS specific errors

theory.lheDecomposer module

	
theory.lheDecomposer.decompose(lhefile, inputXsecs=None, nevts=None, doCompress=False, doInvisible=False, minmassgap=-1.00E+00 [GeV])

	Perform LHE-based decomposition.

	Parameters

	
	lhefile – LHE file with e.g. pythia events, may be given as URL
(though http and ftp only)

	inputXsecs – xSectionList object with cross sections for the mothers
appearing in the LHE file. If None, use information from file.

	nevts – (maximum) number of events used in the decomposition. If
None, all events from file are processed.

	doCompress – mass compression option (True/False)

	doInvisible – invisible compression option (True/False)

	minmassgap – minimum mass gap for mass compression (only used if
doCompress=True)

	Returns

	list of topologies (TopologyList object)

	
theory.lheDecomposer.elementFromEvent(event, weight=None)

	Creates an element from a LHE event and the corresponding event weight.

	Parameters

	
	event – LHE event

	weight – event weight. Must be a XSectionList object (usually with a
single entry) or None if not specified.

	Returns

	element

theory.lheReader module

	
class theory.lheReader.LheReader(filename, nmax=None)

	Bases: object

An instance of this class represents a reader for LHE files.

	
close()

	Close the lhe file, if open.

	
event()

	Get next event.

	Returns

	SmsEvent; None if no event is left to be read.

	
next()

	Get next element in iteration.

Needed for the iterator.

	
class theory.lheReader.Particle

	Bases: object

An instance of this class represents a particle.

	
class theory.lheReader.SmsEvent(eventnr=None)

	Bases: object

Event class featuring a list of particles and some convenience functions.

	
add(particle)

	Add particle to the event.

	
getMom()

	Return the pdgs of the mothers, None if a problem occurs.

	
metaInfo(key)

	Return the meta information of ‘key’, None if info does not exist.

theory.particleNames module

	
class theory.particleNames.InclusiveStr

	Bases: str

A string wildcard class. It will return True when compared to any other string.

	
theory.particleNames.elementsInStr(instring, removeQuotes=True)

	Parse instring and return a list of elements appearing in instring.
instring can also be a list of strings.

	Parameters

	
	instring – string containing elements (e.g. “[[[‘e+’]],[[‘e-‘]]]+[[[‘mu+’]],[[‘mu-‘]]]”)

	removeQuotes – If True, it will remove the quotes from the particle labels.
Set to False, if one wants to run eval on the output.

	Returns

	list of elements appearing in instring in string format

	
theory.particleNames.getFinalStateLabel(pid)

	Given the particle PID, returns the label corresponding to its final state
(e.g. 1000022 -> MET, 1000023 -> HSCP,…)
:parameter pid: PDG code for particle (must appear in particles.py)
:return: Final state string (e.g. MET, HSCP,…)

	
theory.particleNames.getName(pdg)

	Convert pdg number to particle name according to the dictionaries rOdd and
rEven.

	Returns

	particle name (e.g. gluino, mu-, …)

	
theory.particleNames.getPdg(name)

	Convert a name to the pdg number according to the dictionaries rOdd and
rEven.

	Returns

	particle pdg; None, if name could not be resolved

	
theory.particleNames.simParticles(plist1, plist2, useDict=True)

	Compares two lists of particle names. Allows for dictionary
labels (Ex: L = l, l+ = l, l = l-,…). Ignores particle ordering inside
the list

	Parameters

	
	plist1 – first list of particle names, e.g. [‘l’,’jet’]

	plist2 – second list of particle names

	useDict – use the translation dictionary, i.e. allow e to stand for
e+ or e-, l+ to stand for e+ or mu+, etc

	Returns

	True/False if the particles list match (ignoring order)

	
theory.particleNames.vertInStr(instring)

	Parses instring (or a list of strings) and returns the list of particle
vertices appearing in instring.

	Parameters

	instring – string containing elements (e.g. “[[[‘e+’]],[[‘e-‘]]]+[[[‘mu+’]],[[‘mu-‘]]]”)

	Returns

	list of elements appearing in instring in string format

theory.slhaDecomposer module

	
theory.slhaDecomposer.decompose(slhafile, sigcut=1.00E-01 [fb], doCompress=False, doInvisible=False, minmassgap=-1.00E+00 [GeV], useXSecs=None)

	Perform SLHA-based decomposition.

	Parameters

	
	slhafile – the slha input file. May be an URL (though http, ftp only).

	sigcut – minimum sigma*BR to be generated, by default sigcut = 0.1 fb

	doCompress – turn mass compression on/off

	doInvisible – turn invisible compression on/off

	minmassgap – maximum value (in GeV) for considering two R-odd particles
degenerate (only revelant for doCompress=True)

	useXSecs – optionally a dictionary with cross sections for pair
production, by default reading the cross sections
from the SLHA file.

	Returns

	list of topologies (TopologyList object)

	
theory.slhaDecomposer.writeIgnoreMessage(keys, rEven, rOdd)

	

theory.theoryPrediction module

	
theoryPrediction._getElementsFrom(smsTopList, dataset)

	Get elements that belong to any of the TxNames in dataset
(appear in any of constraints in the result).
Loop over all elements in smsTopList and returns a copy of the elements belonging
to any of the constraints (i.e. have efficiency != 0). The copied elements
have their weights multiplied by their respective efficiencies.

	Parameters

	
	dataset – Data Set to be considered (DataSet object)

	smsTopList – list of topologies containing elements
(TopologyList object)

	Returns

	list of elements (Element objects)

	
class theory.theoryPrediction.TheoryPrediction

	Bases: object

An instance of this class represents the results of the theory prediction
for an analysis.

	Variables

	
	analysis – holds the analysis (ULanalysis or EManalysis object)
to which the prediction refers

	xsection – xsection of the theory prediction
(relevant cross section to be compared with the experimental limits).
For EM-type analyses, it corresponds to sigma*eff, for
UL-type analyses, eff is considered to be 1.
It is a XSection object.

	conditions – list of values for the analysis conditions
(only for upper limit-type analysis, e.g. analysis=ULanalysis)

	mass – mass of the cluster to which the theory prediction refers
(only for upper limit-type analysis, e.g. analysis=ULanalysis)

	
analysisId()

	Return experimental analysis ID

	
computeStatistics(marginalize=False, deltas_rel=0.2)

	Compute the likelihood, chi2 and expected upper limit for this theory prediction.
The resulting values are stored as the likelihood and chi2
attributes.
:param marginalize: if true, marginalize nuisances. Else, profile them.
:param deltas_rel: relative uncertainty in signal (float). Default value is 20%.

	
dataId()

	Return ID of dataset

	
dataType()

	Return the type of dataset

	
describe()

	

	
getRValue(expected=False)

	Get the r value = theory prediction / experimental upper limit

	
getUpperLimit(expected=False, deltas_rel=0.2)

	Get the upper limit on sigma*eff.
For UL-type results, use the UL map. For EM-Type returns
the corresponding dataset (signal region) upper limit.
For combined results, returns the upper limit on the
total sigma*eff (for all signal regions/datasets).

	Parameters

	
	expected – return expected Upper Limit, instead of observed.

	deltas_rel – relative uncertainty in signal (float). Default value is 20%.

	Returns

	upper limit (Unum object)

	
getmaxCondition()

	Returns the maximum xsection from the list conditions

	Returns

	maximum condition xsection (float)

	
class theory.theoryPrediction.TheoryPredictionList(theoryPredictions=None)

	Bases: object

An instance of this class represents a collection of theory prediction
objects.

	Variables

	_theoryPredictions – list of TheoryPrediction objects

	
append(theoryPred)

	

	
theory.theoryPrediction.theoryPredictionsFor(expResult, smsTopList, maxMassDist=0.2, useBestDataset=True, combinedResults=True, marginalize=False, deltas_rel=0.2)

	Compute theory predictions for the given experimental result, using the list of
elements in smsTopList.
For each Txname appearing in expResult, it collects the elements and
efficiencies, combine the masses (if needed) and compute the conditions
(if exist).

	Parameters

	
	expResult – expResult to be considered (ExpResult object)

	smsTopList – list of topologies containing elements
(TopologyList object)

	maxMassDist – maximum mass distance for clustering elements (float)

	useBestDataset – If True, uses only the best dataset (signal region).
If False, returns predictions for all datasets (if combinedResults is False),
or only the combinedResults (if combinedResults is True).

	combinedResults – add theory predictions that result from
combining datasets.

	marginalize – If true, marginalize nuisances. If false, profile them.

	deltas_rel – relative uncertainty in signal (float). Default value is 20%.

	Returns

	a TheoryPredictionList object containing a list of TheoryPrediction
objects

theory.topology module

	
class theory.topology.Topology(elements=None)

	Bases: object

An instance of this class represents a topology.

	Variables

	
	vertnumb – list with number of vertices in each branch

	verparts – list with number of final states in each branch

	elementList – list of Element objects with this common topology

	
addElement(newelement)

	Add an Element object to the elementList.

For all the pre-existing elements, which match the new element, add
weight. If no pre-existing elements match the new one, add it to the
list. OBS: newelement MUST ALREADY BE SORTED (see element.sort())

	Parameters

	newelement – element to be added (Element object)

	Returns

	True, if the element was added. False, otherwise

	
checkConsistency()

	Check if the all the elements in elementList are
consistent with the topology (same number of vertices and final states)

	Returns

	True if all the elements are consistent. Print error message
and exits otherwise.

	
describe()

	Create a detailed description of the topology.

	Returns

	list of strings with a description of the topology

	
getElements()

	Get list of elements of the topology.

	Returns

	elementList (list of Element objects)

	
getTotalWeight()

	Return the sum of all elements weights.

	Returns

	sum of weights of all elements (XSection object)

	
class theory.topology.TopologyList(topologies=[])

	Bases: object

An instance of this class represents an iterable collection of topologies.

	Variables

	topos – list of topologies (Topology objects)

	
add(newTopology)

	Check if elements in newTopology matches an entry in self.topos.

If it does, add weight. If the same topology exists, but not the same
element, add element. If neither element nor topology exist, add the
new topology and all its elements.

	Parameters

	newTopology – Topology object

	
addElement(newelement)

	Add an Element object to the corresponding topology in the list.
If the element topology does not match any of the topologies in
the list, create a new topology and insert it in the list.
If the element topology already exists, add it to the respective
topology.
:parameter newelement: element to be added (Element object)
:returns: True, if the element was added. False, otherwise

	
addList(topoList)

	Adds topologies in topoList using the add method.

	
compressElements(doCompress, doInvisible, minmassgap)

	Compress all elements in the list and included the compressed
elements in the topology list.

	Parameters

	
	doCompress – if True, perform mass compression

	doInvisible – if True, perform invisible compression

	minmassgap – value (in GeV) of the maximum
mass difference for compression
(if mass difference < minmassgap, perform mass compression)

	
describe()

	Returns string with basic information about the topology list.

	
getElements()

	Return a list with all the elements in all the topologies.

	
getTotalWeight()

	Return the sum of all topologies total weights.

	
hasTopology(topo)

	Checks if topo appears in any of the topologies in the list.

	Parameters

	topo – Topology object

	Returns

	True if topo appears in the list, False otherwise.

	
index(topo)

	Uses bisect to find the index where of topo in the list.
If topo does not appear in the list, returns None.

	Parameters

	topo – Topology object

	Returns

	position of topo in the list. If topo does not
appear in the list, return None.

	
insert(index, topo)

	

Module contents

experiment package

Submodules

experiment.databaseObj module

	
class experiment.databaseObj.Database(base=None, force_load=None, discard_zeroes=True, progressbar=False, subpickle=True)

	Bases: object

Database object. Holds a list of ExpResult objects.

	Variables

	
	base – path to the database (string)

	force_load – force loading the text database (“txt”),
or binary database (“pcl”), dont force anything if None

	expResultList – list of ExpResult objects

	
base

	This is the path to the base directory.

	
checkBinaryFile()

	

	
checkPathName(path, discard_zeroes)

	checks the path name,
returns the base directory and the pickle file name.
If path starts with http or ftp, fetch the description file
and the database.
returns the base directory and the pickle file name

	
createBinaryFile(filename=None)

	create a pcl file from the text database,
potentially overwriting an old pcl file.

	
createExpResult(root)

	create, from pickle file or text files

	
databaseVersion

	The version of the database, read from the ‘version’ file.

	
fetchFromScratch(path, store, discard_zeroes)

	fetch database from scratch, together with
description.
:param store: filename to store json file.

	
fetchFromServer(path, discard_zeroes)

	

	
getExpResults(analysisIDs=['all'], datasetIDs=['all'], txnames=['all'], dataTypes=['all'], useSuperseded=False, useNonValidated=False, onlyWithExpected=False)

	Returns a list of ExpResult objects.

Each object refers to an analysisID containing one (for UL) or more
(for Efficiency maps) dataset (signal region) and each dataset
containing one or more TxNames. If analysisIDs is defined, returns
only the results matching one of the IDs in the list. If dataTypes is
defined, returns only the results matching a dataType in the list. If
datasetIDs is defined, returns only the results matching one of the IDs
in the list. If txname is defined, returns only the results matching
one of the Tx names in the list.

	Parameters

	
	analysisIDs – list of analysis ids ([CMS-SUS-13-006,…]). Can
be wildcarded with usual shell wildcards: * ? [<letters>]
Furthermore, the centre-of-mass energy can be chosen
as suffix, e.g. “:13*TeV”. Note that the asterisk
in the suffix is not a wildcard.

	datasetIDs – list of dataset ids ([ANA-CUT0,…]). Can be wildcarded
with usual shell wildcards: * ? [<letters>]

	txnames – list of txnames ([TChiWZ,…]). Can be wildcarded with
usual shell wildcards: * ? [<letters>]

	dataTypes – dataType of the analysis (all, efficiencyMap or upperLimit)
Can be wildcarded with usual shell wildcards: * ? [<letters>]

	useSuperseded – If False, the supersededBy results will not be included

	useNonValidated – If False, the results with validated = False
will not be included

	onlyWithExpected – Return only those results that have expected values
also. Note that this is trivially fulfilled for all efficiency maps.

	Returns

	list of ExpResult objects or the ExpResult object if the list
contains only one result

	
inNotebook()

	Are we running within a notebook? Has an effect on the
progressbar we wish to use.

	
loadBinaryFile(lastm_only=False)

	Load a binary database, returning last modified, file count, database.

	Parameters

	lastm_only – if true, the database itself is not read.

	Returns

	database object, or None, if lastm_only == True.

	
loadDatabase()

	if no binary file is available, then
load the database and create the binary file.
if binary file is available, then check if
it needs update, create new binary file, in
case it does need an update.

	
loadTextDatabase()

	simply loads the textdabase

	
needsUpdate()

	does the binary db file need an update?

	
updateBinaryFile()

	write a binar db file, but only if
necessary.

	
class experiment.databaseObj.ExpResultList(expResList)

	Bases: object

Holds a list of ExpResult objects for printout.

	Variables

	expResultList – list of ExpResult objects

experiment.datasetObj module

	
class experiment.datasetObj.CombinedDataSet(expResult)

	Bases: object

Holds the information for a combined dataset (used for combining multiple datasets).

	
combinedLikelihood(nsig, marginalize=False, deltas_rel=0.2)

	Computes the (combined) likelihood to observe nobs events, given a
predicted signal “nsig”, with nsig being a vector with one entry per
dataset. nsig has to obey the datasetOrder. Deltas is the error on
the signal.
:param nsig: predicted signal (list)
:param deltas_rel: relative uncertainty in signal (float). Default value is 20%.

	Returns

	likelihood to observe nobs events (float)

	
getCombinedUpperLimitFor(nsig, expected=False, deltas_rel=0.2)

	Get combined upper limit. If covariances are given in globalInfo then simplified likelihood is used, else if json files are given pyhf cimbination is performed.

	Parameters

	
	nsig – list of signal events in each signal region/dataset. The list
should obey the ordering in globalInfo.datasetOrder.

	expected – return expected, not observed value

	deltas_rel – relative uncertainty in signal (float). Default value is 20%.

	Returns

	upper limit on sigma*eff

	
getDataSet(datasetID)

	Returns the dataset with the corresponding dataset ID.
If the dataset is not found, returns None.

	Parameters

	datasetID – dataset ID (string)

	Returns

	DataSet object if found, otherwise None.

	
getID()

	Return the ID for the combined dataset

	
getPyhfComputer(nsig)

	create the pyhf ul computer object
:returns: pyhf upper limit computer, and combinations of signal regions

	
getType()

	Return the dataset type (combined)

	
sortDataSets()

	Sort datasets according to globalInfo.datasetOrder.

	
totalChi2(nsig, marginalize=False, deltas_rel=0.2)

	Computes the total chi2 for a given number of observed events, given a
predicted signal “nsig”, with nsig being a vector with one entry per
dataset. nsig has to obey the datasetOrder. Deltas is the error on
the signal efficiency.
:param nsig: predicted signal (list)
:param deltas_rel: relative uncertainty in signal (float). Default value is 20%.

	Returns

	chi2 (float)

	
class experiment.datasetObj.DataSet(path=None, info=None, createInfo=True, discard_zeroes=True)

	Bases: object

Holds the information to a data set folder (TxName objects, dataInfo,…)

	
checkForRedundancy()

	In case of efficiency maps, check if any txnames have overlapping
constraints. This would result in double counting, so we dont
allow it.

	
chi2(nsig, deltas_rel=0.2, marginalize=False)

	Computes the chi2 for a given number of observed events “nobs”,
given number of signal events “nsig”, and error on signal “deltas”.
nobs, expectedBG and bgError are part of dataInfo.
:param nsig: predicted signal (float)
:param deltas_rel: relative uncertainty in signal (float). Default value is 20%.
:param marginalize: if true, marginalize nuisances. Else, profile them.
:return: chi2 (float)

	
folderName()

	Name of the folder in text database.

	
getAttributes(showPrivate=False)

	Checks for all the fields/attributes it contains as well as the
attributes of its objects if they belong to smodels.experiment.

	Parameters

	showPrivate – if True, also returns the protected fields (_field)

	Returns

	list of field names (strings)

	
getEfficiencyFor(txname, mass)

	convenience function.
same as self.getTxName(txname).getEfficiencyFor(m)

	
getID()

	Return the dataset ID

	
getSRUpperLimit(alpha=0.05, expected=False, compute=False, deltas_rel=0.2)

	Computes the 95% upper limit on the signal*efficiency for a given dataset (signal region).
Only to be used for efficiency map type results.

	Parameters

	
	alpha – Can be used to change the C.L. value. The default value is 0.05 (= 95% C.L.)

	expected – Compute expected limit (i.e. Nobserved = NexpectedBG)

	deltas_rel – relative uncertainty in signal (float). Default value is 20%.

	compute – If True, the upper limit will be computed
from expected and observed number of events. If False, the value listed
in the database will be used instead.

	Returns

	upper limit value

	
getTxName(txname)

	get one specific txName object.

	
getType()

	Return the dataset type (EM/UL)

	
getUpperLimitFor(mass=None, expected=False, txnames=None, compute=False, alpha=0.05, deltas_rel=0.2)

	Returns the upper limit for a given mass and txname. If
the dataset hold an EM map result the upper limit is independent of
the input txname or mass.

	Parameters

	
	txname – TxName object or txname string (only for UL-type results)

	mass – Mass array with units (only for UL-type results)

	alpha – Can be used to change the C.L. value. The default value is 0.05
(= 95% C.L.) (only for efficiency-map results)

	deltas_rel – relative uncertainty in signal (float). Default value is 20%.

	expected – Compute expected limit, i.e. Nobserved = NexpectedBG
(only for efficiency-map results)

	compute – If True, the upper limit will be computed
from expected and observed number of events.
If False, the value listed in the database will be used
instead.

	Returns

	upper limit (Unum object)

	
getValuesFor(attribute=None)

	Returns a list for the possible values appearing in the DataSet
for the required attribute.

	Parameters

	attribute – name of a field in the database (string). If not defined
it will return a dictionary with all fields and
their respective values

	Returns

	list of values

	
likelihood(nsig, deltas_rel=0.2, marginalize=False)

	Computes the likelihood to observe nobs events,
given a predicted signal “nsig”, assuming “deltas”
error on the signal efficiency.
The values observedN, expectedBG, and bgError are part of dataInfo.
:param nsig: predicted signal (float)
:param deltas_rel: relative uncertainty in signal (float). Default value is 20%.
:param marginalize: if true, marginalize nuisances. Else, profile them.
:returns: likelihood to observe nobs events (float)

experiment.exceptions module

	
exception experiment.exceptions.DatabaseNotFoundException(value)

	Bases: Exception

This exception is used when the database cannot be found.

	
exception experiment.exceptions.SModelSExperimentError(value=None)

	Bases: Exception

Class to define SModelS specific errors

experiment.expResultObj module

	
class experiment.expResultObj.ExpResult(path=None, discard_zeroes=True)

	Bases: object

Object containing the information and data corresponding to an
experimental result (experimental conference note or publication).

	Variables

	
	path – path to the experimental result folder (i.e. ATLAS-CONF-2013-047)

	globalInfo – Info object holding the data in <path>/globalInfo.txt

	datasets – List of DataSet objects corresponding to the dataset folders
in <path>

	
getAttributes(showPrivate=False)

	Checks for all the fields/attributes it contains as well as the
attributes of its objects if they belong to smodels.experiment.

	Parameters

	showPrivate – if True, also returns the protected fields (_field)

	Returns

	list of field names (strings)

	
getDataset(dataId)

	retrieve dataset by dataId

	
getEfficiencyFor(txname, mass, dataset=None)

	Convenience function. Get the efficiency for
a specific dataset for a a specific txname.
Equivalent to:
self.getDataset (dataset).getEfficiencyFor (txname, mass)

	
getTxNames()

	Returns a list of all TxName objects appearing in all datasets.

	
getTxnameWith(restrDict={})

	Returns a list of TxName objects satisfying the restrictions.
The restrictions specified as a dictionary.

	Parameters

	restrDict – dictionary containing the fields and their allowed values.
E.g. {‘txname’ : ‘T1’, ‘axes’ : ….}
The dictionary values can be single entries or a list
of values. For the fields not listed, all values are
assumed to be allowed.

	Returns

	list of TxName objects if more than one txname matches the selection
criteria or a single TxName object, if only one matches the
selection.

	
getUpperLimitFor(dataID=None, alpha=0.05, expected=False, txname=None, mass=None, compute=False)

	Computes the 95% upper limit (UL) on the signal cross section according
to the type of result.
For an Efficiency Map type, returns the UL for the signal*efficiency
for the given dataSet ID (signal region). For an Upper Limit type,
returns the UL for the signal*BR for the given mass array and
Txname.

	Parameters

	
	dataID – dataset ID (string) (only for efficiency-map type results)

	alpha – Can be used to change the C.L. value. The default value is 0.05
(= 95% C.L.) (only for efficiency-map results)

	expected – Compute expected limit, i.e. Nobserved = NexpectedBG
(only for efficiency-map results)

	txname – TxName object or txname string (only for UL-type results)

	mass – Mass array with units (only for UL-type results)

	compute – If True, the upper limit will be computed
from expected and observed number of events.
If False, the value listed in the database will be used
instead.

	Returns

	upper limit (Unum object)

	
getValuesFor(attribute=None)

	Returns a list for the possible values appearing in the ExpResult
for the required attribute (sqrts,id,constraint,…).
If there is a single value, returns the value itself.

	Parameters

	attribute – name of a field in the database (string). If not
defined it will return a dictionary with all fields
and their respective values

	Returns

	list of values or value

	
hasCovarianceMatrix()

	

	
hasJsonFile()

	

	
id()

	

	
writePickle(dbVersion)

	write the pickle file

experiment.infoObj module

	
class experiment.infoObj.Info(path=None)

	Bases: object

Holds the meta data information contained in a .txt file
(luminosity, sqrts, experimentID,…).
Its attributes are generated according to the lines in the
.txt file which contain “info_tag: value”.

	Variables

	path – path to the .txt file

	
addInfo(tag, value)

	Adds the info field labeled by tag with value value to the object.

	Parameters

	
	tag – information label (string)

	value – value for the field in string format

	
cacheJsons()

	if we have the “jsonFiles” attribute defined,
we cache the corresponding jsons. Needed when pickling

	
dirName(up=0)

	directory name of path. If up>0,
we step up ‘up’ directory levels.

	
getInfo(infoLabel)

	Returns the value of info field.

	Parameters

	infoLabel – label of the info field (string). It must be an attribute
of the GlobalInfo object

experiment.metaObj module

	
class experiment.metaObj.Meta(pathname, discard_zeroes=None, mtime=None, filecount=None, hasFastLim=None, databaseVersion=None, format_version=201, python='3.6.8 (default, Jan 24 2020, 02:37:00) n[GCC 7.4.0]')

	Bases: object

	
cTime()

	

	
current_version = 201

	The Meta object holds all meta information regarding the
database, like number of analyses, last time of modification, …
This info is needed to understand if we have to re-pickle.

	
determineLastModified(force=False)

	compute the last modified timestamp, plus count
number of files. Only if text db

	
getPickleFileName()

	get canonical pickle file name

	
isPickle()

	is this meta info from a pickle file?

	
lastModifiedSubDir(subdir)

	Return the last modified timestamp of subdir (working recursively)
plus the number of files.

	Parameters

	
	subdir – directory name that is checked

	lastm – the most recent timestamp so far, plus number of files

	Returns

	the most recent timestamp, and the number of files

	
needsUpdate(current)

	do we need an update, with respect to <current>.
so <current> is the text database, <self> the pcl.

	
printFastlimBanner()

	check if fastlim appears in data.
If yes, print a statement to stdout.

	
sameAs(other)

	check if it is the same database version

	
versionFromFile()

	Retrieves the version of the database using the version file.

experiment.txnameObj module

	
class experiment.txnameObj.Delaunay1D(data)

	Bases: object

Uses a 1D data array to interpolate the data.
The attribute simplices is a list of N-1 pair of ints with the indices of the points
forming the simplices (e.g. [[0,1],[1,2],[3,4],…]).

	
checkData(data)

	Define the simplices according to data. Compute and store
the transformation matrix and simplices self.point.

	
find_index(xlist, x)

	Efficient way to find x in a list.
Returns the index (i) of xlist such that xlist[i] < x <= xlist[i+1].
If x > max(xlist), returns the length of the list.
If x < min(xlist), returns 0. vertices = np.take(self.tri.simplices, simplex, axis=0)
temp = np.take(self.tri.transform, simplex, axis=0)
d=temp.shape[2]
delta = uvw - temp[:, d]

	Parameters

	
	xlist – List of x-type objects

	x – object to be searched for.

	Returns

	Index of the list such that xlist[i] < x <= xlist[i+1].

	
find_simplex(x, tol=0.0)

	Find 1D data interval (simplex) to which x belongs

	Parameters

	
	x – Point (float) without units

	tol – Tolerance. If x is outside the data range with distance < tol, extrapolate.

	Returns

	simplex index (int)

	
class experiment.txnameObj.TxName(path, globalObj, infoObj)

	Bases: object

Holds the information related to one txname in the Txname.txt
file (constraint, condition,…) as well as the data.

	
addInfo(tag, value)

	Adds the info field labeled by tag with value value to the object.

	Parameters

	
	tag – information label (string)

	value – value for the field in string format

	
getEfficiencyFor(mass)

	For upper limit results, checks if the input mass falls inside the
upper limit grid. If it does, returns efficiency = 1, else returns
efficiency = 0. For efficiency map results, checks if the mass falls
inside the efficiency map grid. If it does, returns the corresponding
efficiency value, else returns efficiency = 0.

	Parameters

	element – Element object

	Returns

	efficiency (float)

	
getInfo(infoLabel)

	Returns the value of info field.

	Parameters

	infoLabel – label of the info field (string). It must be an attribute of
the TxNameInfo object

	
getValueFor(massarray, expected=False)

	Access txnameData and txnameDataExp to get value for
massarray.

	Parameters

	
	massarray – mass array values (with units), i.e.
[[100*GeV,10*GeV],[100*GeV,10*GeV]]

	expected – query self.txnameDataExp

	
hasElementAs(element)

	Verify if the conditions or constraint in Txname contains the element.
Check both branch orderings.

	Parameters

	element – Element object

	Returns

	A copy of the element on the correct branch ordering appearing
in the Txname constraint or condition.

	
hasLikelihood()

	can I construct a likelihood for this map?
True for all efficiency maps, and for upper limits maps
with expected Values.

	
hasOnlyZeroes()

	

	
class experiment.txnameObj.TxNameData(value, datatag, Id, accept_errors_upto=0.05)

	Bases: object

Holds the data for the Txname object. It holds Upper limit values or efficiencies.

	
computeV(values)

	Compute rotation matrix _V, and triangulation self.tri

	Parameters

	values – Nested array with the data values

	
countNonZeros(mp)

	count the nonzeros in a vector

	
evaluateString(value)

	Evaluate string.

	Parameters

	value – String expression.

	
flattenArray(objList)

	Flatten any nested list to a 1D list.

	Parameters

	objList – Any list or nested list of objects (e.g. [[[100.,100.],1.],[[200.,200.],2.],..]

	Returns

	1D list (e.g. [100.,100.,1.,200.,200.,2.,..])

	
formatInput(value, shapeArray)

	Format value according to the shape in shapeArray.
If shapeArray contains entries = *, the corresponding entries
in value will be ignored.

	Parameters

	
	value – Array to be formatted (e.g. [[200.,100.],[200.,100.]])

	shapeArray – Array with format info (e.f. [‘*’,[float,float]])

	Returns

	formatted array [[200.,100.]]

	
getDataShape(value)

	Stores the data format (mass shape) and store it for future use.
If there are wildcards (mass or branch = None), store their positions.

	Parameters

	value – list of data points

	
getUnits(value)

	Get standard units for the input object.
Uses the units defined in physicsUnits.standardUnits.
(e.g. [[100*GeV,100.*GeV],3.*pb] -> returns [[GeV,GeV],fb]
[[100*GeV,3.],[200.*GeV,2.*pb]] -> returns [[GeV,1.],[GeV,fb]])

	Parameters

	value – Object containing units (e.g. [[100*GeV,100.*GeV],3.*pb])

	Returns

	Object with same structure containing the standard units used to
normalize the data.

	
getValueFor(massarray)

	Interpolates the value and returns the UL or efficiency for the
respective massarray

	Parameters

	massarray – mass array values (with units), i.e.
[[100*GeV,10*GeV],[100*GeV,10*GeV]]

	
interpolate(point, fill_value=nan)

	

	
loadData(value)

	Uses the information in value to generate the data grid used for
interpolation.

	
onlyZeroValues()

	check if the map is zeroes only

	
removeUnits(value)

	Remove units from unum objects. Uses the units defined
in physicsUnits.standard units to normalize the data.

	Parameters

	value – Object containing units (e.g. [[100*GeV,100.*GeV],3.*pb])

	Returns

	Object normalized to standard units (e.g. [[100,100],3000])

	
removeWildCards(value)

	Remove all entries = ‘*’ from value.

	Parameters

	value – usually a list containing floats and ‘*’ (e.g. [[200.,’*’],’*’],0.4],..)

	
round_to_n(x, n)

	

Module contents

tools package

Submodules

tools.asciiGraph module

	
tools.asciiGraph.asciidraw(element, labels=True, html=False, border=False)

	Draw a simple ASCII graph on the screen.

tools.caching module

	
class tools.caching.Cache

	Bases: object

a class for storing results from interpolation

	
static add(key, value)

	

	
n_stored = 1000

	

	
static reset()

	completely reset the cache

	
static size()

	

tools.colors module

	
class tools.colors.Colors

	Bases: object

	
blue

	

	
cyan

	

	
debug

	

	
error

	

	
green

	

	
info

	

	
magenta

	

	
red

	

	
reset

	

	
warn

	

	
yellow

	

tools.coverage module

	
class tools.coverage.Uncovered(topoList, sumL=True, sumJet=True, sqrts=None)

	Bases: object

Object collecting all information of non-tested/covered elements
:ivar topoList: sms topology list
:ivar sumL: if true, sum up electron and muon to lepton, for missing topos
:ivar sumJet: if true, sum up jets, for missing topos
:ivar sqrts: Center of mass energy. If defined it will only consider cross-sections
for this value. Otherwise the highest sqrts value will be used.

	
addPrevMothers(el)

	

	
fill(topoList)

	Check all elements, categorise those not tested / missing, classify long cascade decays and asymmetric branches
Fills all corresponding objects
:ivar topoList: sms topology list

	
getAllMothers(topoList)

	Find all IDs of mother elements, only most compressed element can be missing topology
:ivar topoList: sms topology list

	
getAsymmetricXsec(sqrts=None)

	

	
getLongCascadeXsec(sqrts=None)

	

	
getMissingX(el)

	Calculate total missing cross section of element, by recursively checking if mothers are covered
:ivar el: Element
:returns: missing cross section in fb as number

	
getMissingXsec(sqrts=None)

	Calculate total missing topology cross section at sqrts. If no sqrts is given use self.sqrts
:ivar sqrts: sqrts

	
getOutOfGridXsec(sqrts=None)

	

	
getOutsideX(el)

	Calculate total outside grid cross section of element, by recursively checking if mothers are covered
:ivar el: Element
:returns: missing cross section in fb as number

	
getTotalXsec(sqrts=None)

	Calculate total cross-section from decomposition (excluding compressed elements)
:ivar sqrts: sqrts

	
hasAsymmetricBranches(el)

	Return True if Element branches are not equal
:ivar el: Element

	
hasLongCascade(el)

	Return True if element has more than 3 particles in the decay chain
:ivar el: Element

	
inOutsideGridMothers(el)

	

	
inPrevMothers(el)

	

	
isMissingTopo(el)

	A missing topology is not a mother element, not covered, and does not have mother which is covered
:ivar el: Element

	
class tools.coverage.UncoveredClass(motherPIDs, el)

	Bases: object

Object collecting all elements contributing to the same uncovered class, defined by the mother PIDs.
:ivar motherPIDs: PID of initially produces particles, sorted and without charge information
:ivar el: Element

	
add(motherPIDs, el)

	Add Element to this UncoveredClass object if motherPIDs match and return True, else return False
:ivar motherPIDs: PID of initially produces particles, sorted and without charge information
:ivar el: Element

	
combine(other)

	

	
getWeight()

	Calculate weight at sqrts
:ivar sqrts: sqrts

	
isSubset(other)

	True if motherPIDs of others are subset of the motherPIDs of this UncoveredClass

	
class tools.coverage.UncoveredClassifier

	Bases: object

Object collecting elements with long cascade decays or asymmetric branches.
Objects are grouped according to the initially produced particle PID pair.

	
addToClasses(el)

	Add Element in corresponding UncoveredClass, defined by mother PIDs.
If no corresponding class in self.classes, add new UncoveredClass
:ivar el: Element

	
combine()

	

	
getMotherPIDs(el)

	

	
getSorted(sqrts)

	Returns list of UncoveredClass objects in self.classes, sorted by weight
:ivar sqrts: sqrts for weight lookup

	
remove(cl)

	Remove element where mother pids match exactly

	
class tools.coverage.UncoveredList(sumL, sumJet, sqrts)

	Bases: object

Object to find and collect UncoveredTopo objects, plus printout functionality
:ivar sumL: if true sum electrons and muons to leptons
:ivar sumJet: if true, sum up jets
:ivar sqrts: sqrts, for printout

	
addToTopos(el)

	adds an element to the list of missing topologies
if the element contributes to a missing topology that is already
in the list, add weight to topology
:parameter el: element to be added

	
generalName(instr)

	generalize by summing over charges
e, mu are combined to l
:parameter instr: element as string
:returns: string of generalized element

	
class tools.coverage.UncoveredTopo(topo, contributingElements=[])

	Bases: object

Object to describe one missing topology result / one topology outside the mass grid
:ivar topo: topology description
:ivar weights: weights dictionary

tools.crashReport module

	
class tools.crashReport.CrashReport

	Bases: object

Class that handles all crash report information.

	
createCrashReportFile(inputFileName, parameterFileName)

	Create a new SModelS crash report file.

A SModelS crash report file contains:

	a timestamp

	SModelS version

	platform information (CPU architecture, operating system, …)

	Python version

	stack trace

	input file name

	input file content

	parameter file name

	parameter file content

	Parameters

	
	inputFileName – relative location of the input file

	parameterFileName – relative location of the parameter file

	
createUnknownErrorMessage()

	Create a message for an unknown error.

	
tools.crashReport.createStackTrace()

	Return the stack trace.

	
tools.crashReport.readCrashReportFile(crashReportFileName)

	Read a crash report file to use its input and parameter file sections for a
SModelS run.

	Parameters

	crashReportFileName – relative location of the crash report file

tools.databaseBrowser module

	
class tools.databaseBrowser.Browser(database, force_txt=False)

	Bases: object

Browses the database, exits if given path does not point to a valid
smodels-database. Browser can be restricted to specified run or experiment.

	
getAttributes(showPrivate=False)

	Checks for all the fields/attributes it contains as well as the
attributes of its objects if they belong to smodels.experiment.

	Parameters

	showPrivate – if True, also returns the protected fields (_field)

	Returns

	list of field names (strings)

	
getEfficiencyFor(expid, dataset, txname, massarray)

	Get an efficiency for the given experimental id,
the dataset name, the txname, and the massarray.
Can only be used for EfficiencyMap-type experimental results.
Interpolation is done, if necessary.

	Parameters

	
	expid – experimental id (string)

	dataset – dataset name (string)

	txname – txname (string).

	massarray – list of masses with units, e.g.
[[400.*GeV, 100.*GeV],[400.*GeV, 100.*GeV]]

	Returns

	efficiency

	
getULFor(expid, txname, massarray, expected=False)

	Get an upper limit for the given experimental id, the txname,
and the massarray.
Can only be used for UL experimental results.
Interpolation is done, if necessary.

	Parameters

	
	expid – experimental id (string)

	txname – txname (string). ONLY required for upper limit results

	massarray – list of masses with units, e.g.
[[400.*GeV, 100.*GeV],[400.*GeV, 100.*GeV]]

	expected – If true, return expected upper limit, otherwise
return observed upper limit.

	Returns

	upper limit [fb]

	
getULForSR(expid, datasetID)

	Get an upper limit for the given experimental id and dataset (signal region).
Can only be used for efficiency-map results.
:param expid: experimental id (string)
:param datasetID: string defining the dataset id, e.g. ANA5-CUT3.
:return: upper limit [fb]

	
getValuesFor(attribute=None, expResult=None)

	Returns a list for the possible values appearing in the database
for the required attribute (sqrts,id,constraint,…).

	Parameters

	
	attribute – name of a field in the database (string). If not defined
it will return a dictionary with all fields and their respective
values

	expResult – if defined, restricts the list to the corresponding expResult.
Must be an ExpResult object.

	Returns

	list of values

	
loadAllResults()

	Saves all the results from database to the _selectedExpResults.
Can be used to restore all results to _selectedExpResults.

	
selectExpResultsWith(**restrDict)

	Loads the list of the experimental results (pair of InfoFile and DataFile)
satisfying the restrictions to the _selectedExpResults.
The restrictions specified as a dictionary.

	Parameters

	restrDict – selection fields and their allowed values.
E.g. lumi = [19.4/fb, 20.3/fb], txName = ‘T1’,….}
The values can be single entries or a list of values.
For the fields not listed, all values are assumed to be allowed.

	
tools.databaseBrowser.main(args)

	IPython interface for browsing the Database.

tools.externalPythonTools module

	
class tools.externalPythonTools.ExternalPythonTool(importname, optional=False)

	Bases: object

An instance of this class represents the installation of unum.
As it is python-only, we need this only for installation,
not for running (contrary to nllfast or pythia).

	
checkInstallation()

	The check is basically done in the constructor

	
compile()

	

	
installDirectory()

	Just returns the pythonPath variable

	
pathOfExecutable()

	Just returns the pythonPath variable

tools.interactivePlots module

	
class tools.interactivePlots.DataHolder(smodelsFolder, slhaFolder, parameterFile)

	Bases: object

A simple class to store the required data for producing the interactive plots

	
fillWith(smodelsDict, slhaData)

	Fill the dictionary (data_dict) with the desired data from
the smodels output dictionary (smodelsDict) and the pyslha.Doc object
slhaData

	
initializeDataDict()

	Initializes an empty dictionary with the plotting options.

	
loadData(npoints=-1)

	Reads the data from the smodels and SLHA folders.
If npoints > 0, it will limit the number of points in the plot to npoints.

	Parameters

	npoints – Number of points to be plotted (int). If < 0, all points will be used.

	
loadParameters()

	Reads the parameters from the plotting parameter file.

	
makePlots(outFolder)

	Uses the data in self.data_dict to produce the plots.

	Parameters

	outFolder – Path to the output folder.

	
tools.interactivePlots.main(args)

	Create the interactive plots using the input from argparse

	Parameters

	args – argparser.Namespace object containing the options for makePlots

	
tools.interactivePlots.makePlots(smodelsFolder, slhaFolder, outputFolder, parameters, npoints, verbosity)

	Main interface for the interactive-plots.

	Parameters

	
	smodelsFolder – Path to the folder containing the SModelS python output

	slhaFolder – Path to the folder containing the SLHA files corresponding to the SModelS output

	parameters – Path to the parameter file setting the options for the interactive plots

	npoints – Number of points used to produce the plot. If -1, all points will be used.

	verbosity – Verbosity of the output (debug,info,warning,error)

	Returns

	True if the plot creation was successfull

tools.interactivePlotsHelpers module

	
tools.interactivePlotsHelpers.create_index_html(path_to_plots, plot_data, plot_title, plot_list, plot_descriptions)

	Fills the index.html file with links to the interactive plots.

	
tools.interactivePlotsHelpers.data_frame_excluded_nonexcluded(data_frame_all)

	Generate sub data frames for excluded and non-excluded points

	
tools.interactivePlotsHelpers.fill_hover(data_frame_all, SModelS_hover_information, slha_hover_information, ctau_hover_information, BR_hover_information)

	Generates the text of the hover, according to users’s requests.

	
tools.interactivePlotsHelpers.get_BR(data_dict, slhaData, BR_hover_information, BR_get_top)

	Gets the requested branching ratios from the slha file, that will go into de hover.

	
tools.interactivePlotsHelpers.get_asymmetric_branches(data_dict, smodelsOutput)

	Extracts the asymmetric branches info from the .py output. If requested, the data will be appended on each corresponding list

	
tools.interactivePlotsHelpers.get_ctau(data_dict, slhaData, ctau_hover_information)

	Computes the requested ctaus, that will go into de hover.

	
tools.interactivePlotsHelpers.get_entry(inputDict, *keys)

	Get entry key in dictionary inputDict.
If a list of keys is provided, it will assumed nested
dictionaries (e.g. key1,key2 will return inputDict[key1][key2]).

	
tools.interactivePlotsHelpers.get_expres(data_dict, smodelsOutput)

	Extracts the Expres info from the .py output. If requested, the data will be appended on each corresponding list

	
tools.interactivePlotsHelpers.get_long_cascades(data_dict, smodelsOutput)

	Extracts the Long cascade info from the .py output. If requested, the data will be appended on each corresponding list

	
tools.interactivePlotsHelpers.get_missed_topologies(data_dict, smodelsOuptut)

	Extracts the Missed topologies info from the .py output. If requested, the data will be appended on each corresponding list

	
tools.interactivePlotsHelpers.get_outside_grid(data_dict, smodelsOutput)

	Extracts the outside grid info from the .py output. If requested, the data will be appended on each corresponding list.

	
tools.interactivePlotsHelpers.get_slha_data(slhaFile)

	Uses pyslha to read the SLHA file. Return a pyslha.Doc objec, if successful.

	
tools.interactivePlotsHelpers.get_slha_file(smodelsDict)

	Returns the file name of the SLHA file corresponding to the output in smodelsDict

	
tools.interactivePlotsHelpers.get_slha_hover_info(data_dict, slhaData, slha_hover_information)

	Gets the requested slha info from eachh slha file, to fill the hover.

	
tools.interactivePlotsHelpers.get_variable(data_dict, slhaData, slha_hover_information, variable)

	Gets the variable from the slha file.

	
tools.interactivePlotsHelpers.get_xy_axis(variable_x, variable_y)

	Retrieves the names of the x and y axis variables.

	
tools.interactivePlotsHelpers.import_python_output(smodelsFile)

	Imports the smodels output from each .py file.

	
tools.interactivePlotsHelpers.make_continuous_plots_all(cont_plots, x_axis, y_axis, path_to_plots, data_frame_all, plot_data, plot_title, variable_x, variable_y, plot_descriptions)

	Generate plots with continuous z axis variables, using all data points

	
tools.interactivePlotsHelpers.make_continuous_plots_excluded(cont_plots, x_axis, y_axis, path_to_plots, data_frame_excluded, plot_data, plot_title, variable_x, variable_y, plot_descriptions)

	Generate plots with continuous z axis variables, using excluded data points

	
tools.interactivePlotsHelpers.make_continuous_plots_nonexcluded(cont_plots, x_axis, y_axis, path_to_plots, data_frame_nonexcluded, plot_data, plot_title, variable_x, variable_y, plot_descriptions)

	Generate plots with continuous z axis variables, using non-excluded data points

	
tools.interactivePlotsHelpers.make_data_frame(data_dict)

	Transform the main dictionary in a data frame.

	
tools.interactivePlotsHelpers.make_discrete_plots_all(disc_plots, x_axis, y_axis, path_to_plots, data_frame_all, plot_data, plot_title, variable_x, variable_y, plot_descriptions)

	Generate plots with discrete z axis variables, using all data points

	
tools.interactivePlotsHelpers.make_discrete_plots_excluded(disc_plots, x_axis, y_axis, path_to_plots, data_frame_excluded, plot_data, plot_title, variable_x, variable_y, plot_descriptions)

	Generate plots with discrete z axis variables, using excluded data points

	
tools.interactivePlotsHelpers.make_discrete_plots_nonexcluded(disc_plots, x_axis, y_axis, path_to_plots, data_frame_nonexcluded, plot_data, plot_title, variable_x, variable_y, plot_descriptions)

	Generate plots with discrete z axis variables, using non-excluded data points

	
tools.interactivePlotsHelpers.output_status(smodelsDict)

	Check the smodels output status in the file, if it’s -1,
it will append ‘none’ to each list in the dictionary.

	
tools.interactivePlotsHelpers.plot_description()

	Generate a description for each plot.

	
tools.interactivePlotsHelpers.separate_cont_disc_plots(plot_list, data_dict)

	Generate sub lists of plots with discrete and conitnuous z axis variables.

tools.ioObjects module

	
class tools.ioObjects.FileStatus

	Bases: object

Object to run several checks on the input file.
It holds an LheStatus (SlhaStatus) object if inputType = lhe (slha)

	
checkFile(inputFile, sigmacut=None)

	Run checks on the input file.

	Parameters

	
	inputFile – path to input file

	sigmacut – sigmacut in fb

	
class tools.ioObjects.LheStatus(filename)

	Bases: object

Object to check if input lhe file contains errors.

	Variables

	filename – path to input LHE file

	
evaluateStatus()

	run status check

	
class tools.ioObjects.OutputStatus(status, inputFile, parameters, databaseVersion)

	Bases: object

Object that holds all status information and has a predefined printout.

	
addWarning(warning)

	Append warning to warnings.

	Parameters

	warning – warning to be appended

	
updateSLHAStatus(status)

	Update SLHA status.

	Parameters

	status – new SLHA status flag

	
updateStatus(status)

	Update status.

	Parameters

	status – new status flag

	
class tools.ioObjects.Qnumbers(pid)

	Bases: object

An instance of this class represents quantum numbers.

Get quantum numbers (spin*2, electrical charge*3, color dimension) from qNumbers.

	
class tools.ioObjects.ResultList(theoPredictionsList=[], maxcond=1.0)

	Bases: object

Class that collects a list of theory predictions plus the corresponding upper limits.

	
addTheoPrediction(theoPred, maxcond)

	Add a result to the theoryPredictions, unless it violates maxcond.

	Parameters

	
	theoPred – a Theory Prediction object to be added to ResultList

	maxcond – maximum condition violation

	
getBestExpected()

	Find EM result with the highest expected R vaue.
:returns: Theory Prediction object

	
getR(theoPred, expected=False)

	Calculate R value.

	Parameters

	theoPred – Theory Prediction object

	Returns

	R value = weight / upper limit

	
isEmpty()

	Check if outputarray is empty.

	
sort()

	Reverse sort theoryPredictions by R value.

	
class tools.ioObjects.SlhaStatus(filename, maxDisplacement=0.01, sigmacut=3.00E-02 [fb], findMissingDecayBlocks=True, findIllegalDecays=False, checkXsec=True)

	Bases: object

An instance of this class represents the status of an SLHA file.
The output status is:
= 0 : the file is not checked,
= 1: the check is ok
= -1: case of a physical problem, e.g. charged LSP,
= -2: case of formal problems, e.g. no cross sections

	
degenerateChi()

	Check if chi01 is lsp and chipm1 is NLSP. If so, check mass splitting.
This function is not used, the limit is arbitrary.

	
deltaMass(pid1, pid2)

	Calculate mass splitting between particles with pid1 and pid2.

	Returns

	mass difference

	
emptyDecay(pid)

	Check if any decay is listed for the particle with pid

	Parameters

	pid – PID number of particle to be checked

	Returns

	True if the decay block is missing or if it is empty, None otherwise

	
evaluateStatus()

	Get status summary from all performed checks.

	Returns

	a status flag and a message for explanation

	
findIllegalDecay(findIllegal)

	Find decays for which the sum of daughter masses excels the mother mass

	Parameters

	findIllegal – True if check should be run

	Returns

	status flag and message

	
findLSP(returnmass=None)

	Find lightest particle (not in rEven).

	Returns

	pid, mass of the lsp, if returnmass == True

	
findLonglivedParticles(findLonglived)

	Find meta-stable particles that decay to visible particles
and stable charged particles.

	Returns

	status flag, message

	
findMissingDecayBlocks(findMissingBlocks)

	For all non-rEven particles listed in mass block, check if decay block is written

	Returns

	status flag and message

	
findNLSP(returnmass=None)

	Find second lightest particle (not in rEven).

	Returns

	pid ,mass of the NLSP, if returnmass == True

	
getDecayWidth(pid)

	Get the decay-width for particle with pid, if it exists.

	
getDecayWidths()

	Get all decay-widths as a dictionary {pid: width}.

	
getLifetime(pid, ctau=False)

	Compute lifetime from decay-width for a particle with pid.

	Parameters

	
	pid – PID of particle

	ctau – set True to multiply lifetime by c

	Returns

	lifetime

	
hasXsec(checkXsec)

	Check if XSECTION table is present in the slha file.

	Parameters

	checkXsec – set True to run the check

	Returns

	status flag, message

	
massDiffLSPandNLSP()

	Get the mass difference between the lsp and the nlsp.

	
read()

	Get pyslha output object.

	
sumBR(pid)

	Calculate the sum of all branching ratios for particle with pid.

	Parameters

	pid – PID of particle

	Returns

	sum of branching ratios as given in the decay table for pid

	
testLSP(checkLSP)

	Check if LSP is charged.

	Parameters

	checkLSP – set True to run the check

	Returns

	status flag, message

	
visible(pid, decay=None)

	Check if pid is detectable.
If pid is not known, consider it as visible.
If pid not SM particle and decay = True, check if particle or decay products are visible.

tools.lheChecks module

	
tools.lheChecks.main(args)

	

tools.modelTester module

	
tools.modelTester.checkForSemicolon(strng, section, var)

	

	
tools.modelTester.getAllInputFiles(inFile)

	Given inFile, return list of all input files

	Parameters

	inFile – Path to input file or directory containing input files

	Returns

	List of all input files, and the directory name

	
tools.modelTester.getParameters(parameterFile)

	Read parameter file, exit in case of errors

	Parameters

	parameterFile – Path to parameter File

	Returns

	ConfigParser read from parameterFile

	
tools.modelTester.loadDatabase(parser, db)

	Load database

	Parameters

	
	parser – ConfigParser with path to database

	db – binary database object. If None, then database is loaded,
according to databasePath. If True, then database is loaded,
and text mode is forced.

	Returns

	database object, database version

	
tools.modelTester.loadDatabaseResults(parser, database)

	Load database entries specified in parser

	Parameters

	
	parser – ConfigParser, containing analysis and txnames selection

	database – Database object

	Returns

	List of experimental results

	
tools.modelTester.runSetOfFiles(inputFiles, outputDir, parser, databaseVersion, listOfExpRes, timeout, development, parameterFile, jobnr)

	Loop over all input files in inputFiles with testPoint

	Parameters

	
	inputFiles – list of input files to be tested

	outputDir – path to directory where output is be stored

	parser – ConfigParser storing information from parameter.ini file

	databaseVersion – Database version (printed to output file)

	listOfExpRes – list of ExpResult objects to be considered

	development – turn on development mode (e.g. no crash report)

	parameterFile – parameter file, for crash reports

	jobnr – number of process, in parallel mode. mostly for debugging.

	Returns

	printers output

	
tools.modelTester.runSingleFile(inputFile, outputDir, parser, databaseVersion, listOfExpRes, timeout, development, parameterFile)

	Call testPoint on inputFile, write crash report in case of problems

	Parameters

	
	inputFile – path to input file

	outputDir – path to directory where output is be stored

	parser – ConfigParser storing information from parameter.ini file

	databaseVersion – Database version (printed to output file)

	listOfExpRes – list of ExpResult objects to be considered

	crashReport – if True, write crash report in case of problems

	timeout – set a timeout for one model point (0 means no timeout)

	Returns

	output of printers

	
tools.modelTester.testPoint(inputFile, outputDir, parser, databaseVersion, listOfExpRes)

	Test model point defined in input file (running decomposition, check
results, test coverage)

	Parameters

	
	inputFile – path to input file

	outputDir – path to directory where output is be stored

	parser – ConfigParser storing information from parameters file

	databaseVersion – Database version (printed to output file)

	listOfExpRes – list of ExpResult objects to be considered

	Returns

	output of printers

	
tools.modelTester.testPoints(fileList, inDir, outputDir, parser, databaseVersion, listOfExpRes, timeout, development, parameterFile)

	Loop over all input files in fileList with testPoint, using ncpus CPUs
defined in parser

	Parameters

	
	fileList – list of input files to be tested

	inDir – path to directory where input files are stored

	outputDir – path to directory where output is stored

	parser – ConfigParser storing information from parameter.ini file

	databaseVersion – Database version (printed to output files)

	listOfExpRes – list of ExpResult objects to be considered

	timeout – set a timeout for one model point (0 means no timeout)

	development – turn on development mode (e.g. no crash report)

	parameterFile – parameter file, for crash reports

	Returns

	printer(s) output, if not run in parallel mode

tools.nllFastWrapper module

	
class tools.nllFastWrapper.NllFastWrapper(sqrts, nllfastVersion, testParams, testCondition)

	Bases: smodels.tools.wrapperBase.WrapperBase

An instance of this class represents the installation of nllfast.

	
getKfactorsFor(pIDs, slhafile, pdf='cteq')

	Read the NLLfast grid and returns a pair of k-factors (NLO and NLL) for
the PIDs pair.

	Returns

	k-factors = None, if NLLfast does not contain the process; uses
the slhafile to obtain the SUSY spectrum.

	
class tools.nllFastWrapper.NllFastWrapper13

	Bases: tools.nllFastWrapper.NllFastWrapper

An instance of this class represents the installation of nllfast 8.

	
class tools.nllFastWrapper.NllFastWrapper7

	Bases: tools.nllFastWrapper.NllFastWrapper

An instance of this class represents the installation of nllfast 7.

	
class tools.nllFastWrapper.NllFastWrapper8

	Bases: tools.nllFastWrapper.NllFastWrapper

An instance of this class represents the installation of nllfast 8.

tools.physicsUnits module

tools.printer module

	
class tools.printer.BasicPrinter(output, filename)

	Bases: object

Super class to handle the basic printing methods

	
addObj(obj)

	Adds object to the Printer.

	Parameters

	obj – A object to be printed. Must match one of the types defined in formatObj

	Returns

	True if the object has been added to the output. If the object does not belong
to the pre-defined printing list toPrint, returns False.

	
filename

	

	
flush()

	Format the objects added to the output, print them to the screen
or file and remove them from the printer.

	
mkdir()

	create directory to file, if necessary

	
openOutFile(filename, mode)

	creates and opens a data sink,
creates path if needed

	
setOptions(options)

	Store the printer specific options to control the output of each printer.
Each option is stored as a printer attribute.

	Parameters

	options – a list of (option,value) for the printer.

	
class tools.printer.MPrinter

	Bases: object

Master Printer class to handle the Printers (one printer/output type)

	
addObj(obj)

	Adds the object to all its Printers:

	Parameters

	obj – An object which can be handled by the Printers.

	
flush()

	Ask all printers to write the output and clear their cache.
If the printers return anything other than None,
we pass it on.

	
setOutPutFiles(filename, silent=False)

	Set the basename for the output files. Each printer will
use this file name appended of the respective extension
(i.e. .py for a python printer, .smodels for a summary printer,…)

	Parameters

	
	filename – Input file name

	silent – dont comment removing old files

	
setPrinterOptions(parser)

	Define the printer types and their options.

	Parameters

	parser – ConfigParser storing information from the parameters file

	
class tools.printer.PyPrinter(output='stdout', filename=None)

	Bases: tools.printer.BasicPrinter

Printer class to handle the printing of one single pythonic output

	
flush()

	Write the python dictionaries generated by the object formatting
to the defined output

	
setOutPutFile(filename, overwrite=True, silent=False)

	Set the basename for the text printer. The output filename will be
filename.py.
:param filename: Base filename
:param overwrite: If True and the file already exists, it will be removed.
:param silent: dont comment removing old files

	
class tools.printer.SLHAPrinter(output='file', filename=None)

	Bases: tools.printer.TxTPrinter

Printer class to handle the printing of slha format summary output.
It uses the facilities of the TxTPrinter.

	
setOutPutFile(filename, overwrite=True, silent=False)

	Set the basename for the text printer. The output filename will be
filename.smodels.
:param filename: Base filename
:param overwrite: If True and the file already exists, it will be removed.
:param silent: dont comment removing old files

	
class tools.printer.SummaryPrinter(output='stdout', filename=None)

	Bases: tools.printer.TxTPrinter

Printer class to handle the printing of one single summary output.
It uses the facilities of the TxTPrinter.

	
setOutPutFile(filename, overwrite=True, silent=False)

	Set the basename for the text printer. The output filename will be
filename.smodels.
:param filename: Base filename
:param overwrite: If True and the file already exists, it will be removed.
:param silent: dont comment removing old files

	
class tools.printer.TxTPrinter(output='stdout', filename=None)

	Bases: tools.printer.BasicPrinter

Printer class to handle the printing of one single text output

	
setOutPutFile(filename, overwrite=True, silent=False)

	Set the basename for the text printer. The output filename will be
filename.log.

	Parameters

	
	filename – Base filename

	overwrite – If True and the file already exists, it will be removed.

	silent – dont comment removing old files

	
class tools.printer.XmlPrinter(output='stdout', filename=None)

	Bases: tools.printer.PyPrinter

Printer class to handle the printing of one single XML output

	
convertToElement(pyObj, parent, tag='')

	Convert a python object (list,dict,string,…)
to a nested XML element tree.
:param pyObj: python object (list,dict,string…)
:param parent: XML Element parent
:param tag: tag for the daughter element

	
flush()

	Get the python dictionaries generated by the object formatting
to the defined output and convert to XML

	
setOutPutFile(filename, overwrite=True, silent=False)

	Set the basename for the text printer. The output filename will be
filename.xml.
:param filename: Base filename
:param overwrite: If True and the file already exists, it will be removed.
:param silent: dont comment removing old files

tools.pyhfInterface module

	
class tools.pyhfInterface.PyhfData(nsignals, inputJsons)

	Bases: object

Holds data for use in pyhf
:ivar nsignals: signal predictions list divided into sublists, one for each json file
:ivar inputJsons: list of json instances
:ivar nWS: number of workspaces = number of json files

	
checkConsistency()

	Check various inconsistencies of the PyhfData attributes

	Variables

	zeroSignalsFlag – boolean identifying if all SRs of a single json are empty

	
getWSInfo()

	Getting informations from the json files

	Variables

	channelsInfo – list of dictionaries (one dictionary for each json file) containing useful information about the json files
- :key signalRegions: list of dictonaries with ‘json path’ and ‘size’ (number of bins) of the ‘signal regions’ channels in the json files
- :key otherRegions: list of strings indicating the path to the control and validation region channels

	
class tools.pyhfInterface.PyhfUpperLimitComputer(data, cl=0.95)

	Bases: object

Class that computes the upper limit using the jsons files and signal informations in the data instance of PyhfData

	
chi2(workspace_index=None)

	Returns the chi square

	
likelihood(workspace_index=None)

	Returns the value of the likelihood.
Inspired by the pyhf.infer.mle module but for non-log likelihood

	
patchMaker()

	Method that creates the list of patches to be applied to the self.inputJsons workspaces, one for each region given the self.nsignals and the informations available in self.channelsInfo and the content of the self.inputJsons
NB: It seems we need to include the change of the “modifiers” in the patches as well

	Returns

	the list of patches, one for each workspace

	
rescale(factor)

	Rescales the signal predictions (self.nsignals) and processes again the patches and workspaces

	Returns

	updated list of patches and workspaces (self.patches and self.workspaces)

	
ulSigma(expected=False, workspace_index=None)

	
	Compute the upper limit on the signal strength modifier with:

	
	by default, the combination of the workspaces contained into self.workspaces

	if workspace_index is specified, self.workspace[workspace_index] (useful for computation of the best upper limit)

	Parameters

	
	expected –
	if set to True: uses expected SM backgrounds as signals

	else: uses self.nsignals

	workspace_index –
	if different from None: index of the workspace to use for upper limit

	else: all workspaces are combined

	Returns

	the upper limit at self.cl level (0.95 by default)

	
wsMaker()

	Apply each region patch (self.patches) to his associated json (self.inputJsons) to obtain the complete workspaces

	Returns

	the list of patched workspaces

	
tools.pyhfInterface.getLogger()

	Configure the logging facility. Maybe adapted to fit into
your framework.

tools.pythia6Wrapper module

	
class tools.pythia6Wrapper.Pythia6Wrapper(configFile='<install>/smodels/etc/pythia.card', executablePath='<install>/smodels/lib/pythia6/pythia_lhe', srcPath='<install>/smodels/lib/pythia6/')

	Bases: smodels.tools.wrapperBase.WrapperBase

An instance of this class represents the installation of pythia6.

	
checkFileExists(inputFile)

	Check if file exists, raise an IOError if it does not.

	Returns

	absolute file name if file exists.

	
replaceInCfgFile(replacements={'NEVENTS': 10000, 'SQRTS': 8000})

	Replace strings in the config file by other strings, similar to
setParameter.

This is introduced as a simple mechanism to make changes to the
parameter file.

	Parameters

	replacements – dictionary of strings and values; the strings will
be replaced with the values; the dictionary keys
must be strings present in the config file

	
run(slhafile, lhefile=None, unlink=True)

	Execute pythia_lhe with n events, at sqrt(s)=sqrts.

	Parameters

	
	slhafile – input SLHA file

	lhefile – option to write LHE output to file; if None, do not write
output to disk. If lhe file exists, use its events for
xsecs calculation.

	unlink – Clean up temp directory after running pythia

	Returns

	List of cross sections

	
setParameter(param='MSTP(163)', value=6)

	Modifies the config file, similar to .replaceInCfgFile.

It will set param to value, overwriting possible old values.

	
unlink(unlinkdir=True)

	Remove temporary files.

	Parameters

	unlinkdir – remove temp directory completely

tools.pythia8Wrapper module

	
class tools.pythia8Wrapper.Pythia8Wrapper(configFile='<install>/smodels/etc/pythia8.cfg', executablePath='<install>/smodels/lib/pythia8/pythia8.exe', srcPath='<install>/smodels/lib/pythia8/')

	Bases: smodels.tools.wrapperBase.WrapperBase

An instance of this class represents the installation of pythia8.

	
checkFileExists(inputFile)

	Check if file exists, raise an IOError if it does not.

	Returns

	absolute file name if file exists.

	
chmod()

	chmod 755 on pythia executable, if it exists.
Do nothing, if it doesnt exist.

	
run(slhaFile, lhefile=None, unlink=True)

	Run pythia8.

	Parameters

	
	slhaFile – SLHA file

	lhefile – option to write LHE output to file; if None, do not write
output to disk. If lhe file exists, use its events for
xsecs calculation.

	unlink – clean up temporary files after run?

	Returns

	List of cross sections

	
unlink(unlinkdir=True)

	Remove temporary files.

	Parameters

	unlinkdir – remove temp directory completely

tools.pythia8particles module

tools.runSModelS module

	
tools.runSModelS.main()

	

	
tools.runSModelS.run(inFile, parameterFile, outputDir, db, timeout, development)

	Provides a command line interface to basic SModelS functionalities.

	Parameters

	
	inFile – input file name (either a SLHA or LHE file)
or directory name (path to directory containing input files)

	parameterFile – File containing the input parameters (default =
smodels/etc/parameters_default.ini)

	outputDir – Output directory to write a summary of results to

	db – supply a smodels.experiment.databaseObj.Database object, so
the database doesn’t have to be loaded anymore. Will
render a few parameters in the parameter file irrelevant.
If None, load the database as described in parameterFile,
If True, force loading the text database.

	timeout – set a timeout for one model point (0 means no timeout)

	development – turn on development mode (e.g. no crash report)

tools.runtime module

	
tools.runtime.filetype(filename)

	obtain information about the filetype of an input file,
currently only used to discriminate between slha and lhe
files.

	Returns

	filetype as string(“slha” or “lhe”),
None if file does not exist, or filetype is unknown.

	
tools.runtime.nCPUs()

	obtain the number of CPU cores on the machine, for several
platforms and python versions.

tools.simplifiedLikelihoods module

	
class tools.simplifiedLikelihoods.Data(observed, backgrounds, covariance, third_moment=None, nsignal=None, name='model', deltas_rel=0.2)

	Bases: object

A very simple observed container to collect all the data
needed to fully define a specific statistical model

	
convert(obj)

	Convert object to numpy arrays.
If object is a float or int, it is converted to a one element
array.

	
correlations()

	Correlation matrix, computed from covariance matrix.
Convenience function.

	
diagCov()

	Diagonal elements of covariance matrix. Convenience function.

	
isLinear()

	Statistical model is linear, i.e. no quadratic term in poissonians

	
isScalar(obj)

	Determine if obj is a scalar (float or int)

	
sandwich()

	Sandwich product

	
signals(mu)

	Returns the number of expected signal events, for all datasets,
given total signal strength mu.

	Parameters

	mu – Total number of signal events summed over all datasets.

	
totalCovariance(nsig)

	get the total covariance matrix, taking into account
also signal uncertainty for the signal hypothesis <nsig>.
If nsig is None, the predefined signal hypothesis is taken.

	
var_s(nsig=None)

	The signal variances. Convenience function.

	Parameters

	nsig – If None, it will use the model expected number of signal events,
otherwise will return the variances for the input value using the relative
signal uncertainty defined for the model.

	
zeroSignal()

	Is the total number of signal events zero?

	
class tools.simplifiedLikelihoods.LikelihoodComputer(data, ntoys=10000)

	Bases: object

	
chi2(nsig, marginalize=False)

	Computes the chi2 for a given number of observed events nobs given
the predicted background nb, error on this background deltab,
expected number of signal events nsig and the relative error on
signal (deltas_rel).
:param marginalize: if true, marginalize, if false, profile
:param nsig: number of signal events
:return: chi2 (float)

	
dLdMu(mu, signal_rel, theta_hat)

	d (ln L)/d mu, if L is the likelihood. The function
whose root gives us muhat, i.e. the mu that maximizes
the likelihood.

	Parameters

	
	mu – total number of signal events

	signal_rel – array with the relative signal strengths for each dataset (signal region)

	theta_hat – array with nuisance parameters

	
debug_mode = False

	

	
findMuHat(signal_rel)

	Find the most likely signal strength mu
given the relative signal strengths in each dataset (signal region).

	Parameters

	signal_rel – array with relative signal strengths

	Returns

	mu_hat, the total signal yield.

	
findThetaHat(nsig)

	Compute nuisance parameter theta that maximizes our likelihood
(poisson*gauss).

	
getSigmaMu(signal_rel)

	Get a rough estimate for the variance of mu around mu_max.

	Parameters

	signal_rel – array with relative signal strengths in each dataset (signal region)

	
getThetaHat(nobs, nb, nsig, covb, max_iterations)

	Compute nuisance parameter theta that
maximizes our likelihood (poisson*gauss).

	
likelihood(nsig, marginalize=False, nll=False)

	compute likelihood for nsig, profiling the nuisances
:param marginalize: if true, marginalize, if false, profile
:param nll: return nll instead of likelihood

	
marginalizedLLHD1D(nsig, nll)

	Return the likelihood (of 1 signal region) to observe nobs events given the
predicted background nb, error on this background (deltab),
expected number of signal events nsig and the relative error on the signal (deltas_rel).

	Parameters

	
	nsig – predicted signal (float)

	nobs – number of observed events (float)

	nb – predicted background (float)

	deltab – uncertainty on background (float)

	Returns

	likelihood to observe nobs events (float)

	
marginalizedLikelihood(nsig, nll)

	compute the marginalized likelihood of observing nsig signal event

	
nll(theta)

	probability, for nuicance parameters theta,
as a negative log likelihood.

	
nllHess(theta)

	the Hessian of nll as a function of the thetas.
Makes it easier to find the maximum likelihood.

	
nllprime(theta)

	the derivative of nll as a function of the thetas.
Makes it easier to find the maximum likelihood.

	
probMV(nll, theta)

	probability, for nuicance parameters theta
:params nll: if True, compute negative log likelihood

	
profileLikelihood(nsig, nll)

	compute the profiled likelihood for nsig.
Warning: not normalized.
Returns profile likelihood and error code (0=no error)

	
class tools.simplifiedLikelihoods.UpperLimitComputer(ntoys=10000, cl=0.95)

	Bases: object

	
debug_mode = False

	

	
ulSigma(model, marginalize=False, toys=None, expected=False)

	
	upper limit obtained from the defined Data (using the signal prediction

	for each signal regio/dataset), by using
the q_mu test statistic from the CCGV paper (arXiv:1007.1727).

	Params marginalize

	if true, marginalize nuisances, else profile them

	Params toys

	specify number of toys. Use default is none

	Params expected

	compute the expected value, not the observed.

	Returns

	upper limit on production xsec (efficiencies unfolded)

	
tools.simplifiedLikelihoods.getLogger()

	Configure the logging facility. Maybe adapted to fit into
your framework.

tools.slhaChecks module

	
tools.slhaChecks.main(args)

	

tools.smodelsLogging module

	
class tools.smodelsLogging.ColorizedStreamHandler(stream=None)

	Bases: logging.StreamHandler

	
format(record)

	Format the specified record.

If a formatter is set, use it. Otherwise, use the default formatter
for the module.

	
should_color()

	

	
tools.smodelsLogging.getLogLevel(asString=False)

	obtain the current log level.
:params asString: return string, not number.

	
tools.smodelsLogging.getLogger()

	

	
tools.smodelsLogging.setLogLevel(level)

	set the log level of the central logger.
can either be directly an integer (e.g. logging.DEBUG),
or “debug”, “info”, “warning”, or “error”.

tools.smodelsTools module

	
tools.smodelsTools.main()

	

tools.stringTools module

	
tools.stringTools.cleanWalk(topdir)

	perform os.walk, but ignore all hidden files and directories

	
tools.stringTools.concatenateLines(oldcontent)

	of all lines in the list “oldcontent”, concatenate the ones
that end with or ,

tools.timeOut module

	
exception tools.timeOut.NoTime(value=None)

	Bases: Exception

The time out exception. Raised when the running time exceeds timeout

	
class tools.timeOut.Timeout(sec)

	Bases: object

Timeout class using ALARM signal.

	
raise_timeout(*args)

	

tools.toolBox module

	
class tools.toolBox.ToolBox

	Bases: object

A singleton-like class that keeps track of all external tools.
Intended to make installation and deployment easier.

	
add(instance)

	Adds a tool by passing an instance to this method.

	
checkInstallation(make=False, printit=True, long=False)

	Checks if all tools listed are installed properly,
returns True if everything is ok, False otherwise.

	
compile()

	Tries to compile and install tools that are not yet marked
as ‘installed’.

	
get(tool, verbose=True)

	Gets instance of tool from the toolbox.

	
initSingleton()

	Initializes singleton instance (done only once for the entire class).

	
installationOk(ok)

	Returns color coded string to signal installation issues.

	
listOfTools()

	Returns a simple list with the tool names.

	
tools.toolBox.main(args)

	

tools.wrapperBase module

	
class tools.wrapperBase.WrapperBase

	Bases: object

An instance of this class represents the installation of an external tool.

An external tool encapsulates a tool that is executed via
commands.getoutput. The wrapper defines how the tool is tested for proper
installation and how the tool is executed.

	
absPath(path)

	Get the absolute path of <path>, replacing <install> with the
installation directory.

	
basePath()

	Get the base installation path.

	
checkInstallation(compile=True)

	Checks if installation of tool is correct by looking for executable and
executing it. If check is False and compile is True, then try and compile it.

	Returns

	True, if everything is ok

	
chmod()

	chmod 755 on executable, if it exists. Do nothing, if it doesnt exist.

	
compile()

	Try to compile the tool.

	
complain()

	

	
installDirectory()

	
	Returns

	the installation directory of the tool

	
pathOfExecutable()

	
	Returns

	path of executable

	
tempDirectory()

	Return the temporary directory name.

	
tools.wrapperBase.ok(b)

	
	Returns

	‘ok’ if b is True, else, return ‘error’.

tools.xsecComputer module

	
class tools.xsecComputer.ArgsStandardizer

	Bases: object

simple class to collect all argument manipulators

	
checkAllowedSqrtses(order, sqrtses)

	check if the sqrtses are ‘allowed’

	
checkNCPUs(ncpus, inputFiles)

	

	
getInputFiles(args)

	geth the names of the slha files to run over

	
getOrder(args)

	retrieve the order in perturbation theory from argument list

	
getPythiaVersion(args)

	

	
getSqrtses(args)

	extract the sqrtses from argument list

	
queryCrossSections(filename)

	

	
writeToFile(args)

	

	
class tools.xsecComputer.XSecComputer(maxOrder, nevents, pythiaVersion)

	Bases: object

cross section computer class, what else?

	
addHigherOrders(sqrts, slhafile)

	add higher order xsecs

	
addXSecToFile(xsecs, slhafile, comment=None, complain=True)

	Write cross sections to an SLHA file.

	Parameters

	
	xsecs – a XSectionList object containing the cross sections

	slhafile – target file for writing the cross sections in SLHA format

	comment – optional comment to be added to each cross section block

	complain – complain if there are already cross sections in file

	
compute(sqrts, slhafile, lhefile=None, unlink=True, loFromSlha=None, pythiacard=None)

	Run pythia and compute SUSY cross sections for the input SLHA file.

	Parameters

	
	sqrts – sqrt{s} to run Pythia, given as a unum (e.g. 7.*TeV)

	slhafile – SLHA file

	lhefile – LHE file. If None, do not write pythia output to file. If
file does not exist, write pythia output to this file name. If
file exists, read LO xsecs from this file (does not run pythia).

	unlink – Clean up temp directory after running pythia

	loFromSlha – If True, uses the LO xsecs from the SLHA file to compute the
higher order xsecs

	pythiaCard – Optional path to pythia.card. If None, uses /etc/pythia.card

	Returns

	XSectionList object

	
computeForBunch(sqrtses, inputFiles, unlink, lOfromSLHA, tofile, pythiacard=None)

	compute xsecs for a bunch of slha files

	
computeForOneFile(sqrtses, inputFile, unlink, lOfromSLHA, tofile, pythiacard=None)

	compute the cross sections for one file.
:param sqrtses: list of sqrt{s} tu run pythia, as a unum (e.g. 7*TeV)

	
xsecToBlock(xsec, inPDGs=(2212, 2212), comment=None, xsecUnit=1.00E+00 [pb])

	Generate a string for a XSECTION block in the SLHA format from a XSection
object.

	Parameters

	
	inPDGs – defines the PDGs of the incoming states
(default = 2212,2212)

	comment – is added at the end of the header as a comment

	xsecUnit – unit of cross sections to be written (default is pb).
Must be a Unum unit.

	
tools.xsecComputer.main(args)

	

Module contents

C++ Interface

Since v1.1.1, a simple C++ interface is provided, see
the smodels/cpp directory in the source code.

Its usage is documented in run.cpp:

#include <SModelS.h>
#include <iostream>
#include <string>

/** example only */

using namespace std;

int main(int argc, char * argv[])
{
 /** initialise SModelS, load database, second argument (installdir) must point to smodels
 * installation top-level directory */
 SModelS smodels ("./parameters.ini", "../");
 /** run over one single file or directory */
 int ret = smodels.run ("test.slha");
}

A sample Makefile is also provided. The python header
files have to be installed.

 Python Module Index

 a |
 b |
 c |
 d |
 e |
 i |
 l |
 m |
 n |
 p |
 r |
 s |
 t |
 w |
 x

 		 	

 		
 a	

 	
 	
 asciiGraph	
 Contains a simple routine to draw ASCII-art Feynman-like graphs.

 	
 	
 auxiliaryFunctions	
 A collection of functions used to evaluate fuzzy the conditions.

 		 	

 		
 b	

 	
 	
 branch	
 Module holding the branch class and methods.

 		 	

 		
 c	

 	
 	
 caching	
 The memoize technique, for caching.

 	
 	
 clusterTools	
 Module holding the ElementCluster class and cluster methods used to combine similar elements according
to the analysis.

 	
 	
 colors	
 Simple facility to handle console colors

 	
 	
 coverage	
 Definitions of classes used to find, format missing topologies

 	
 	
 crashReport	
 Facility used in runSModelS.py to create and read SModelS crash report files.

 	
 	
 crossSection	
 Encapsulates the result of the computation of the reference
cross section.

 		 	

 		
 d	

 	
 	
 databaseBrowser	
 Centralized facility to access smodels-database.

 	
 	
 datasetObj	
 Holds the classes and methods used to read and store the information in the
data folders.

 		 	

 		
 e	

 	
 	
 element	
 Module holding the Element class and its methods.

 	
 	
 exceptions	
 Contains exceptions for SModelS's experiment package.

 	[image: -]
 	
 experiment	

 	
 	
 experiment.__init__	
 This package is intended to contain everything that has to do
with the experimental results.

 	
 	
 experiment.databaseObj	

 	
 	
 experiment.datasetObj	

 	
 	
 experiment.exceptions	
 Contains exceptions for SModelS's theory package.

 	
 	
 experiment.expResultObj	

 	
 	
 experiment.infoObj	

 	
 	
 experiment.metaObj	

 	
 	
 experiment.txnameObj	

 	
 	
 expResultObj	
 Contains class that encapsulates an experimental result

 	
 	
 externalPythonTools	
 This module is to check the installation of python tools,
i.e. unum, scipy, numpy, pyslha.

 		 	

 		
 i	

 	
 	
 infoObj	
 Holds the classes and methods used to read and store the
information in the globalInfo.txt or dataInfo.txt files.

 	
 	
 interactive_plots	
 Main module of the interactive plots.

 	
 	
 interactivePlotsHelpers	
 Main functions for producing interactive plots

 	
 	
 ioObjects	
 Definitions of input/output parameters which are read from parameter.in.

 		 	

 		
 l	

 	
 	
 lheChecks	
 Check LHE file format.

 	
 	
 lheDecomposer	
 Decomposition of LHE events and creation of TopologyLists.

 	
 	
 lheReader	
 Provides a class that creates SMSEvents from LHE files.

 		 	

 		
 m	

 	
 	
 metaObj	
 Contains the Meta object used to track the provenance of
the pickle file.

 	
 	
 modelTester	
 Functions to test (a set of) points, handling decomposition,
result and coverage checks, parallelisation.

 		 	

 		
 n	

 	
 	
 nllFastWrapper	
 This module provides methods to access the nllfast grid and
compute k-factors (when available) to SUSY pair
production cross sections.

 		 	

 		
 p	

 	
 	
 particleNames	
 Provides functions for getting particle names from pdg ids, and
other helpers.

 	
 	
 physicsUnits	
 This introduces physical units (GeV, fb) to the framework.

 	
 	
 printer	
 Facility used to print elements, theorypredictions, missing topologies et al
in various forms

 	
 	
 pyhfInterface	
 Code that delegates the computation of limits and likelihoods to
pyhf.

 	
 	
 Pythia6Wrapper	
 Wrapper for pythia6.

 	
 	
 pythia8Wrapper	
 Wrapper for pythia8.

 		 	

 		
 r	

 	
 	
 runSModelS	
 Main code for running SModelS.

 	
 	
 runtime	
 Tools to gather info about runtime enviroment,
(nCPUs()), or obtain file type (filetype()). Pointer
to model file is also kept here.

 		 	

 		
 s	

 	
 	
 simplifiedLikelihoods	
 Code that implements the simplified likelihoods as presented
in CMS-NOTE-2017-001, see https://cds.cern.ch/record/2242860.
In collaboration with Andy Buckley, Sylvain Fichet and Nickolas Wardle.
Additional developments will be presented in a future publication.

 	
 	
 slhaChecks	
 Check SLHA file for integrity.

 	
 	
 slhaDecomposer	
 Decomposition of SLHA events and creation of TopologyLists.

 	
 	
 smodelsLogging	
 Simple code that creates and configures a central logger

 	
 	
 smodelsTools	
 Command line program for SModelS tools.

 	
 	
 stringTools	
 Holds all code snippets that meddle with strings

 		 	

 		
 t	

 	[image: -]
 	
 theory	

 	
 	
 theory.__init__	
 This Package is intended to contain everything related to theory:
* cross section calculation code
* sms decomposition code (LHE-based, SLHA-based)
* some more tools, e.g. for reading/writing slha files, or particle names

 	
 	
 theory.auxiliaryFunctions	

 	
 	
 theory.branch	

 	
 	
 theory.clusterTools	

 	
 	
 theory.crossSection	

 	
 	
 theory.element	

 	
 	
 theory.exceptions	

 	
 	
 theory.lheDecomposer	

 	
 	
 theory.lheReader	

 	
 	
 theory.particleNames	

 	
 	
 theory.slhaDecomposer	

 	
 	
 theory.theoryPrediction	

 	
 	
 theory.topology	

 	
 	
 theoryPrediction	
 Provides a class to encapsulate the results of the computation of
reference cross sections and related functions.

 	
 	
 timeOut	
 Facility to implement a time out option when running smodels

 	
 	
 toolBox	
 Contains a singleton-like class that keeps track of all external
"HEP" tools, such as pythia, nllfast, etc.
Used primarily for installation and deployment.

 	[image: -]
 	
 tools	

 	
 	
 tools.__init__	
 This package contains tools for handling results obtained with the
main SModelS code.

 	
 	
 tools.asciiGraph	

 	
 	
 tools.caching	

 	
 	
 tools.colors	

 	
 	
 tools.coverage	

 	
 	
 tools.crashReport	

 	
 	
 tools.databaseBrowser	

 	
 	
 tools.externalPythonTools	

 	
 	
 tools.interactivePlots	

 	
 	
 tools.interactivePlotsHelpers	

 	
 	
 tools.ioObjects	

 	
 	
 tools.lheChecks	

 	
 	
 tools.modelTester	

 	
 	
 tools.nllFastWrapper	

 	
 	
 tools.physicsUnits	

 	
 	
 tools.printer	

 	
 	
 tools.pyhfInterface	

 	
 	
 tools.pythia6Wrapper	

 	
 	
 tools.pythia8particles	

 	
 	
 tools.pythia8Wrapper	

 	
 	
 tools.runSModelS	

 	
 	
 tools.runtime	

 	
 	
 tools.simplifiedLikelihoods	

 	
 	
 tools.slhaChecks	

 	
 	
 tools.smodelsLogging	

 	
 	
 tools.smodelsTools	

 	
 	
 tools.stringTools	

 	
 	
 tools.timeOut	

 	
 	
 tools.toolBox	

 	
 	
 tools.wrapperBase	

 	
 	
 tools.xsecComputer	

 	
 	
 topology	
 Provides a Topology class and a TopologyList collection type.

 	
 	
 txnameObj	
 Holds the classes and methods used to read and store the
information in the txname.txt files.
Also contains the interpolation methods.

 		 	

 		
 w	

 	
 	
 wrapperBase	
 Wrapper code for external tools: base class

 		 	

 		
 x	

 	
 	
 xsecComputer	
 Computation of reference ("theory") production cross sections.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	_getElementsFrom() (in module theoryPrediction)

A

 	
 	absPath() (tools.wrapperBase.WrapperBase method)

 	add() (theory.clusterTools.IndexCluster method)

 	(theory.crossSection.XSectionList method)

 	(theory.lheReader.SmsEvent method)

 	(theory.topology.TopologyList method)

 	(tools.caching.Cache static method)

 	(tools.coverage.UncoveredClass method)

 	(tools.toolBox.ToolBox method)

 	addElement() (theory.topology.Topology method)

 	(theory.topology.TopologyList method)

 	addHigherOrders() (tools.xsecComputer.XSecComputer method)

 	addInfo() (experiment.infoObj.Info method)

 	(experiment.txnameObj.TxName method)

 	addList() (theory.topology.TopologyList method)

 	
 	addObj() (tools.printer.BasicPrinter method)

 	(tools.printer.MPrinter method)

 	addPrevMothers() (tools.coverage.Uncovered method)

 	addTheoPrediction() (tools.ioObjects.ResultList method)

 	addToClasses() (tools.coverage.UncoveredClassifier method)

 	addToTopos() (tools.coverage.UncoveredList method)

 	addWarning() (tools.ioObjects.OutputStatus method)

 	addXSecToFile() (tools.xsecComputer.XSecComputer method)

 	analysisId() (theory.theoryPrediction.TheoryPrediction method)

 	append() (theory.theoryPrediction.TheoryPredictionList method)

 	ArgsStandardizer (class in tools.xsecComputer)

 	asciidraw() (in module tools.asciiGraph)

 	asciiGraph (module)

 	auxiliaryFunctions (module)

B

 	
 	base (experiment.databaseObj.Database attribute)

 	basePath() (tools.wrapperBase.WrapperBase method)

 	Basic Concepts and Definitions

 	Basic Input

 	
 	BasicPrinter (class in tools.printer)

 	blue (tools.colors.Colors attribute)

 	Branch (class in theory.branch)

 	branch (module)

 	Browser (class in tools.databaseBrowser)

C

 	
 	C++ Interface

 	Cache (class in tools.caching)

 	cacheJsons() (experiment.infoObj.Info method)

 	caching (module)

 	cGtr() (in module theory.auxiliaryFunctions)

 	checkAllowedSqrtses() (tools.xsecComputer.ArgsStandardizer method)

 	checkBinaryFile() (experiment.databaseObj.Database method)

 	checkConsistency() (theory.element.Element method)

 	(theory.topology.Topology method)

 	(tools.pyhfInterface.PyhfData method)

 	checkData() (experiment.txnameObj.Delaunay1D method)

 	checkFile() (tools.ioObjects.FileStatus method)

 	checkFileExists() (tools.pythia6Wrapper.Pythia6Wrapper method)

 	(tools.pythia8Wrapper.Pythia8Wrapper method)

 	checkForRedundancy() (experiment.datasetObj.DataSet method)

 	checkForSemicolon() (in module tools.modelTester)

 	checkInstallation() (tools.externalPythonTools.ExternalPythonTool method)

 	(tools.toolBox.ToolBox method)

 	(tools.wrapperBase.WrapperBase method)

 	checkNCPUs() (tools.xsecComputer.ArgsStandardizer method)

 	checkPathName() (experiment.databaseObj.Database method)

 	chi2() (experiment.datasetObj.DataSet method)

 	(tools.pyhfInterface.PyhfUpperLimitComputer method)

 	(tools.simplifiedLikelihoods.LikelihoodComputer method)

 	chmod() (tools.pythia8Wrapper.Pythia8Wrapper method)

 	(tools.wrapperBase.WrapperBase method)

 	cleanWalk() (in module tools.stringTools)

 	close() (theory.lheReader.LheReader method)

 	clusterElements() (in module theory.clusterTools)

 	clusterTools (module)

 	Code Documentation

 	ColorizedStreamHandler (class in tools.smodelsLogging)

 	Colors (class in tools.colors)

 	colors (module)

 	combine() (tools.coverage.UncoveredClass method)

 	(tools.coverage.UncoveredClassifier method)

 	CombinedDataSet (class in experiment.datasetObj)

 	combinedLikelihood() (experiment.datasetObj.CombinedDataSet method)

 	combineMotherElements() (theory.element.Element method)

 	
 	combinePIDs() (theory.element.Element method)

 	combineWith() (theory.crossSection.XSectionList method)

 	compile() (tools.externalPythonTools.ExternalPythonTool method)

 	(tools.toolBox.ToolBox method)

 	(tools.wrapperBase.WrapperBase method)

 	complain() (tools.wrapperBase.WrapperBase method)

 	compressElement() (theory.element.Element method)

 	compressElements() (theory.topology.TopologyList method)

 	compute() (tools.xsecComputer.XSecComputer method)

 	computeForBunch() (tools.xsecComputer.XSecComputer method)

 	computeForOneFile() (tools.xsecComputer.XSecComputer method)

 	computeStatistics() (theory.theoryPrediction.TheoryPrediction method)

 	computeV() (experiment.txnameObj.TxNameData method)

 	concatenateLines() (in module tools.stringTools)

 	Confronting Theory Predictions with Data

 	convert() (tools.simplifiedLikelihoods.Data method)

 	convertToElement() (tools.printer.XmlPrinter method)

 	copy() (theory.branch.Branch method)

 	(theory.clusterTools.IndexCluster method)

 	(theory.crossSection.XSection method)

 	(theory.crossSection.XSectionInfo method)

 	(theory.crossSection.XSectionList method)

 	(theory.element.Element method)

 	correlations() (tools.simplifiedLikelihoods.Data method)

 	countNonZeros() (experiment.txnameObj.TxNameData method)

 	coverage (module)

 	CrashReport (class in tools.crashReport)

 	crashReport (module)

 	create_index_html() (in module tools.interactivePlotsHelpers)

 	createBinaryFile() (experiment.databaseObj.Database method)

 	createCrashReportFile() (tools.crashReport.CrashReport method)

 	createExpResult() (experiment.databaseObj.Database method)

 	createStackTrace() (in module tools.crashReport)

 	createUnknownErrorMessage() (tools.crashReport.CrashReport method)

 	crossSection (module)

 	cSim() (in module theory.auxiliaryFunctions)

 	cTime() (experiment.metaObj.Meta method)

 	current_version (experiment.metaObj.Meta attribute)

 	cyan (tools.colors.Colors attribute)

D

 	
 	Data (class in tools.simplifiedLikelihoods)

 	data_frame_excluded_nonexcluded() (in module tools.interactivePlotsHelpers)

 	Database (class in experiment.databaseObj)

 	Database Definitions

 	Database Structure

 	databaseBrowser (module)

 	DatabaseNotFoundException

 	databaseVersion (experiment.databaseObj.Database attribute)

 	DataHolder (class in tools.interactivePlots)

 	dataId() (theory.theoryPrediction.TheoryPrediction method)

 	DataSet (class in experiment.datasetObj)

 	datasetObj (module)

 	dataType() (theory.theoryPrediction.TheoryPrediction method)

 	debug (tools.colors.Colors attribute)

 	debug_mode (tools.simplifiedLikelihoods.LikelihoodComputer attribute)

 	(tools.simplifiedLikelihoods.UpperLimitComputer attribute)

 	
 	decayBranches() (in module theory.branch)

 	decayDaughter() (theory.branch.Branch method)

 	decompose() (in module theory.lheDecomposer)

 	(in module theory.slhaDecomposer)

 	Decomposition into Simplified Models

 	degenerateChi() (tools.ioObjects.SlhaStatus method)

 	Delaunay1D (class in experiment.txnameObj)

 	delete() (theory.crossSection.XSectionList method)

 	deltaMass() (tools.ioObjects.SlhaStatus method)

 	describe() (theory.theoryPrediction.TheoryPrediction method)

 	(theory.topology.Topology method)

 	(theory.topology.TopologyList method)

 	determineLastModified() (experiment.metaObj.Meta method)

 	diagCov() (tools.simplifiedLikelihoods.Data method)

 	dirName() (experiment.infoObj.Info method)

 	distance() (in module theory.auxiliaryFunctions)

 	dLdMu() (tools.simplifiedLikelihoods.LikelihoodComputer method)

E

 	
 	Element (class in theory.element)

 	element (module)

 	ElementCluster (class in theory.clusterTools)

 	elementFromEvent() (in module theory.lheDecomposer)

 	elementsInStr() (in module theory.particleNames)

 	emptyDecay() (tools.ioObjects.SlhaStatus method)

 	error (tools.colors.Colors attribute)

 	evaluateStatus() (tools.ioObjects.LheStatus method)

 	(tools.ioObjects.SlhaStatus method)

 	evaluateString() (experiment.txnameObj.TxNameData method)

 	event() (theory.lheReader.LheReader method)

 	exceptions (module)

 	experiment (module)

 	
 	experiment.__init__ (module)

 	experiment.databaseObj (module)

 	experiment.datasetObj (module)

 	experiment.exceptions (module), [1]

 	experiment.expResultObj (module)

 	experiment.infoObj (module)

 	experiment.metaObj (module)

 	experiment.txnameObj (module)

 	ExpResult (class in experiment.expResultObj)

 	ExpResultList (class in experiment.databaseObj)

 	expResultObj (module)

 	ExternalPythonTool (class in tools.externalPythonTools)

 	externalPythonTools (module)

F

 	
 	fetchFromScratch() (experiment.databaseObj.Database method)

 	fetchFromServer() (experiment.databaseObj.Database method)

 	filename (tools.printer.BasicPrinter attribute)

 	FileStatus (class in tools.ioObjects)

 	filetype() (in module tools.runtime)

 	fill() (tools.coverage.Uncovered method)

 	fill_hover() (in module tools.interactivePlotsHelpers)

 	fillWith() (tools.interactivePlots.DataHolder method)

 	find_index() (experiment.txnameObj.Delaunay1D method)

 	find_simplex() (experiment.txnameObj.Delaunay1D method)

 	findIllegalDecay() (tools.ioObjects.SlhaStatus method)

 	findLonglivedParticles() (tools.ioObjects.SlhaStatus method)

 	
 	findLSP() (tools.ioObjects.SlhaStatus method)

 	findMissingDecayBlocks() (tools.ioObjects.SlhaStatus method)

 	findMuHat() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	findNLSP() (tools.ioObjects.SlhaStatus method)

 	findThetaHat() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	flattenArray() (experiment.txnameObj.TxNameData method)

 	flush() (tools.printer.BasicPrinter method)

 	(tools.printer.MPrinter method)

 	(tools.printer.PyPrinter method)

 	(tools.printer.XmlPrinter method)

 	folderName() (experiment.datasetObj.DataSet method)

 	format() (tools.smodelsLogging.ColorizedStreamHandler method)

 	formatInput() (experiment.txnameObj.TxNameData method)

G

 	
 	generalName() (tools.coverage.UncoveredList method)

 	get() (tools.toolBox.ToolBox method)

 	get_asymmetric_branches() (in module tools.interactivePlotsHelpers)

 	get_BR() (in module tools.interactivePlotsHelpers)

 	get_ctau() (in module tools.interactivePlotsHelpers)

 	get_entry() (in module tools.interactivePlotsHelpers)

 	get_expres() (in module tools.interactivePlotsHelpers)

 	get_long_cascades() (in module tools.interactivePlotsHelpers)

 	get_missed_topologies() (in module tools.interactivePlotsHelpers)

 	get_outside_grid() (in module tools.interactivePlotsHelpers)

 	get_slha_data() (in module tools.interactivePlotsHelpers)

 	get_slha_file() (in module tools.interactivePlotsHelpers)

 	get_slha_hover_info() (in module tools.interactivePlotsHelpers)

 	get_variable() (in module tools.interactivePlotsHelpers)

 	get_xy_axis() (in module tools.interactivePlotsHelpers)

 	getAllInputFiles() (in module tools.modelTester)

 	getAllMothers() (tools.coverage.Uncovered method)

 	getAsymmetricXsec() (tools.coverage.Uncovered method)

 	getAttributes() (experiment.datasetObj.DataSet method)

 	(experiment.expResultObj.ExpResult method)

 	(tools.databaseBrowser.Browser method)

 	getAvgMass() (theory.clusterTools.ElementCluster method)

 	getBestExpected() (tools.ioObjects.ResultList method)

 	getCombinedUpperLimitFor() (experiment.datasetObj.CombinedDataSet method)

 	getDataSet() (experiment.datasetObj.CombinedDataSet method)

 	getDataset() (experiment.expResultObj.ExpResult method)

 	getDataShape() (experiment.txnameObj.TxNameData method)

 	getDataType() (theory.clusterTools.ElementCluster method)

 	getDaughters() (theory.element.Element method)

 	getDecayWidth() (tools.ioObjects.SlhaStatus method)

 	getDecayWidths() (tools.ioObjects.SlhaStatus method)

 	getDictionary() (theory.crossSection.XSectionList method)

 	getEfficiencyFor() (experiment.datasetObj.DataSet method)

 	(experiment.expResultObj.ExpResult method)

 	(experiment.txnameObj.TxName method)

 	(tools.databaseBrowser.Browser method)

 	getEinfo() (theory.element.Element method)

 	getElements() (theory.topology.Topology method)

 	(theory.topology.TopologyList method)

 	getExpResults() (experiment.databaseObj.Database method)

 	getFinalStateLabel() (in module theory.particleNames)

 	getFinalStates() (theory.element.Element method)

 	getID() (experiment.datasetObj.CombinedDataSet method)

 	(experiment.datasetObj.DataSet method)

 	getIDs() (theory.clusterTools.ElementCluster method)

 	getInfo() (experiment.infoObj.Info method)

 	(experiment.txnameObj.TxName method)

 	(theory.branch.Branch method)

 	(theory.branch.InclusiveBranch method)

 	(theory.crossSection.XSectionList method)

 	getInputFiles() (tools.xsecComputer.ArgsStandardizer method)

 	getKfactorsFor() (tools.nllFastWrapper.NllFastWrapper method)

 	getLength() (theory.branch.Branch method)

 	getLifetime() (tools.ioObjects.SlhaStatus method)

 	getLogger() (in module tools.pyhfInterface)

 	(in module tools.simplifiedLikelihoods)

 	(in module tools.smodelsLogging)

 	getLogLevel() (in module tools.smodelsLogging)

 	
 	getLongCascadeXsec() (tools.coverage.Uncovered method)

 	getMasses() (theory.element.Element method)

 	getmaxCondition() (theory.theoryPrediction.TheoryPrediction method)

 	getMaxXsec() (theory.crossSection.XSectionList method)

 	getMinXsec() (theory.crossSection.XSectionList method)

 	getMissingX() (tools.coverage.Uncovered method)

 	getMissingXsec() (tools.coverage.Uncovered method)

 	getMom() (theory.lheReader.SmsEvent method)

 	getMotherPIDs() (tools.coverage.UncoveredClassifier method)

 	getMothers() (theory.element.Element method)

 	getName() (in module theory.particleNames)

 	getOrder() (tools.xsecComputer.ArgsStandardizer method)

 	getOutOfGridXsec() (tools.coverage.Uncovered method)

 	getOutsideX() (tools.coverage.Uncovered method)

 	getParameters() (in module tools.modelTester)

 	getParticles() (theory.element.Element method)

 	getPdg() (in module theory.particleNames)

 	getPickleFileName() (experiment.metaObj.Meta method)

 	getPIDpairs() (theory.crossSection.XSectionList method)

 	getPIDs() (theory.clusterTools.ElementCluster method)

 	(theory.crossSection.XSectionList method)

 	(theory.element.Element method)

 	getPyhfComputer() (experiment.datasetObj.CombinedDataSet method)

 	getPythiaVersion() (tools.xsecComputer.ArgsStandardizer method)

 	getR() (tools.ioObjects.ResultList method)

 	getRValue() (theory.theoryPrediction.TheoryPrediction method)

 	getSigmaMu() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	getSorted() (tools.coverage.UncoveredClassifier method)

 	getSqrtses() (tools.xsecComputer.ArgsStandardizer method)

 	getSRUpperLimit() (experiment.datasetObj.DataSet method)

 	getThetaHat() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	getTotalWeight() (theory.topology.Topology method)

 	(theory.topology.TopologyList method)

 	getTotalXSec() (theory.clusterTools.ElementCluster method)

 	getTotalXsec() (tools.coverage.Uncovered method)

 	getTxName() (experiment.datasetObj.DataSet method)

 	getTxNames() (experiment.expResultObj.ExpResult method)

 	getTxnameWith() (experiment.expResultObj.ExpResult method)

 	getType() (experiment.datasetObj.CombinedDataSet method)

 	(experiment.datasetObj.DataSet method)

 	getULFor() (tools.databaseBrowser.Browser method)

 	getULForSR() (tools.databaseBrowser.Browser method)

 	getUnits() (experiment.txnameObj.TxNameData method)

 	getUpperLimit() (theory.theoryPrediction.TheoryPrediction method)

 	getUpperLimitFor() (experiment.datasetObj.DataSet method)

 	(experiment.expResultObj.ExpResult method)

 	getValueFor() (experiment.txnameObj.TxName method)

 	(experiment.txnameObj.TxNameData method)

 	getValuesFor() (experiment.datasetObj.DataSet method)

 	(experiment.expResultObj.ExpResult method)

 	(tools.databaseBrowser.Browser method)

 	getWeight() (tools.coverage.UncoveredClass method)

 	getWSInfo() (tools.pyhfInterface.PyhfData method)

 	getXsecFromLHEFile() (in module theory.crossSection)

 	getXsecFromSLHAFile() (in module theory.crossSection)

 	getXsecsFor() (theory.crossSection.XSectionList method)

 	green (tools.colors.Colors attribute)

 	groupAll() (in module theory.clusterTools)

H

 	
 	hasAsymmetricBranches() (tools.coverage.Uncovered method)

 	hasCovarianceMatrix() (experiment.expResultObj.ExpResult method)

 	hasElementAs() (experiment.txnameObj.TxName method)

 	hasJsonFile() (experiment.expResultObj.ExpResult method)

 	hasLikelihood() (experiment.txnameObj.TxName method)

 	
 	hasLongCascade() (tools.coverage.Uncovered method)

 	hasOnlyZeroes() (experiment.txnameObj.TxName method)

 	hasTopInList() (theory.element.Element method)

 	hasTopology() (theory.topology.TopologyList method)

 	hasXsec() (tools.ioObjects.SlhaStatus method)

 	How To's

I

 	
 	id() (experiment.expResultObj.ExpResult method)

 	import_python_output() (in module tools.interactivePlotsHelpers)

 	InclusiveBranch (class in theory.branch)

 	InclusiveInt (class in theory.branch)

 	InclusiveList (class in theory.branch)

 	InclusiveStr (class in theory.particleNames)

 	index() (theory.topology.TopologyList method)

 	index_bisect() (in module theory.auxiliaryFunctions)

 	IndexCluster (class in theory.clusterTools)

 	Info (class in experiment.infoObj)

 	info (tools.colors.Colors attribute)

 	infoObj (module)

 	initializeDataDict() (tools.interactivePlots.DataHolder method)

 	initSingleton() (tools.toolBox.ToolBox method)

 	inNotebook() (experiment.databaseObj.Database method)

 	inOutsideGridMothers() (tools.coverage.Uncovered method)

 	
 	inPrevMothers() (tools.coverage.Uncovered method)

 	insert() (theory.topology.TopologyList method)

 	Installation and Deployment

 	installationOk() (tools.toolBox.ToolBox method)

 	installDirectory() (tools.externalPythonTools.ExternalPythonTool method)

 	(tools.wrapperBase.WrapperBase method)

 	interactive_plots (module)

 	interactivePlotsHelpers (module)

 	interpolate() (experiment.txnameObj.TxNameData method)

 	invisibleCompress() (theory.element.Element method)

 	ioObjects (module)

 	isEmpty() (tools.ioObjects.ResultList method)

 	isLinear() (tools.simplifiedLikelihoods.Data method)

 	isMissingTopo() (tools.coverage.Uncovered method)

 	isPickle() (experiment.metaObj.Meta method)

 	isScalar() (tools.simplifiedLikelihoods.Data method)

 	isSubset() (tools.coverage.UncoveredClass method)

L

 	
 	lastModifiedSubDir() (experiment.metaObj.Meta method)

 	lheChecks (module)

 	lheDecomposer (module)

 	LheReader (class in theory.lheReader)

 	lheReader (module)

 	LheStatus (class in tools.ioObjects)

 	likelihood() (experiment.datasetObj.DataSet method)

 	(tools.pyhfInterface.PyhfUpperLimitComputer method)

 	(tools.simplifiedLikelihoods.LikelihoodComputer method)

 	LikelihoodComputer (class in tools.simplifiedLikelihoods)

 	
 	listOfTools() (tools.toolBox.ToolBox method)

 	loadAllResults() (tools.databaseBrowser.Browser method)

 	loadBinaryFile() (experiment.databaseObj.Database method)

 	loadData() (experiment.txnameObj.TxNameData method)

 	(tools.interactivePlots.DataHolder method)

 	loadDatabase() (experiment.databaseObj.Database method)

 	(in module tools.modelTester)

 	loadDatabaseResults() (in module tools.modelTester)

 	loadParameters() (tools.interactivePlots.DataHolder method)

 	loadTextDatabase() (experiment.databaseObj.Database method)

M

 	
 	magenta (tools.colors.Colors attribute)

 	main() (in module tools.databaseBrowser)

 	(in module tools.interactivePlots)

 	(in module tools.lheChecks)

 	(in module tools.runSModelS)

 	(in module tools.slhaChecks)

 	(in module tools.smodelsTools)

 	(in module tools.toolBox)

 	(in module tools.xsecComputer)

 	make_continuous_plots_all() (in module tools.interactivePlotsHelpers)

 	make_continuous_plots_excluded() (in module tools.interactivePlotsHelpers)

 	make_continuous_plots_nonexcluded() (in module tools.interactivePlotsHelpers)

 	make_data_frame() (in module tools.interactivePlotsHelpers)

 	make_discrete_plots_all() (in module tools.interactivePlotsHelpers)

 	make_discrete_plots_excluded() (in module tools.interactivePlotsHelpers)

 	
 	make_discrete_plots_nonexcluded() (in module tools.interactivePlotsHelpers)

 	makePlots() (in module tools.interactivePlots)

 	(tools.interactivePlots.DataHolder method)

 	marginalizedLikelihood() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	marginalizedLLHD1D() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	massAvg() (in module theory.auxiliaryFunctions)

 	massCompress() (theory.element.Element method)

 	massDiffLSPandNLSP() (tools.ioObjects.SlhaStatus method)

 	massPosition() (in module theory.auxiliaryFunctions)

 	Meta (class in experiment.metaObj)

 	metaInfo() (theory.lheReader.SmsEvent method)

 	metaObj (module)

 	Missing Topologies

 	mkdir() (tools.printer.BasicPrinter method)

 	modelTester (module)

 	MPrinter (class in tools.printer)

N

 	
 	n_stored (tools.caching.Cache attribute)

 	nCPUs() (in module tools.runtime)

 	needsUpdate() (experiment.databaseObj.Database method)

 	(experiment.metaObj.Meta method)

 	next() (theory.lheReader.LheReader method)

 	niceStr() (theory.crossSection.XSection method)

 	(theory.crossSection.XSectionList method)

 	nll() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	
 	NllFastWrapper (class in tools.nllFastWrapper)

 	nllFastWrapper (module)

 	NllFastWrapper13 (class in tools.nllFastWrapper)

 	NllFastWrapper7 (class in tools.nllFastWrapper)

 	NllFastWrapper8 (class in tools.nllFastWrapper)

 	nllHess() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	nllprime() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	NoTime

O

 	
 	ok() (in module tools.wrapperBase)

 	onlyZeroValues() (experiment.txnameObj.TxNameData method)

 	openOutFile() (tools.printer.BasicPrinter method)

 	
 	order() (theory.crossSection.XSectionList method)

 	Output Description

 	output_status() (in module tools.interactivePlotsHelpers)

 	OutputStatus (class in tools.ioObjects)

P

 	
 	Particle (class in theory.lheReader)

 	particleNames (module)

 	particlesMatch() (theory.branch.Branch method)

 	(theory.element.Element method)

 	patchMaker() (tools.pyhfInterface.PyhfUpperLimitComputer method)

 	pathOfExecutable() (tools.externalPythonTools.ExternalPythonTool method)

 	(tools.wrapperBase.WrapperBase method)

 	physicsUnits (module)

 	pid (theory.crossSection.XSection attribute)

 	plot_description() (in module tools.interactivePlotsHelpers)

 	printer (module)

 	
 	printFastlimBanner() (experiment.metaObj.Meta method)

 	probMV() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	profileLikelihood() (tools.simplifiedLikelihoods.LikelihoodComputer method)

 	PyhfData (class in tools.pyhfInterface)

 	pyhfInterface (module)

 	PyhfUpperLimitComputer (class in tools.pyhfInterface)

 	PyPrinter (class in tools.printer)

 	Pythia6Wrapper (class in tools.pythia6Wrapper)

 	(module)

 	Pythia8Wrapper (class in tools.pythia8Wrapper)

 	pythia8Wrapper (module)

Q

 	
 	Qnumbers (class in tools.ioObjects)

 	
 	queryCrossSections() (tools.xsecComputer.ArgsStandardizer method)

R

 	
 	raise_timeout() (tools.timeOut.Timeout method)

 	read() (tools.ioObjects.SlhaStatus method)

 	readCrashReportFile() (in module tools.crashReport)

 	red (tools.colors.Colors attribute)

 	remove() (theory.clusterTools.IndexCluster method)

 	(tools.coverage.UncoveredClassifier method)

 	removeLowerOrder() (theory.crossSection.XSectionList method)

 	removeUnits() (experiment.txnameObj.TxNameData method)

 	removeWildCards() (experiment.txnameObj.TxNameData method)

 	replaceInCfgFile() (tools.pythia6Wrapper.Pythia6Wrapper method)

 	rescale() (tools.pyhfInterface.PyhfUpperLimitComputer method)

 	
 	reset (tools.colors.Colors attribute)

 	reset() (tools.caching.Cache static method)

 	ResultList (class in tools.ioObjects)

 	round_to_n() (experiment.txnameObj.TxNameData method)

 	run() (in module tools.runSModelS)

 	(tools.pythia6Wrapper.Pythia6Wrapper method)

 	(tools.pythia8Wrapper.Pythia8Wrapper method)

 	runSetOfFiles() (in module tools.modelTester)

 	runSingleFile() (in module tools.modelTester)

 	runSModelS (module)

 	runtime (module)

S

 	
 	sameAs() (experiment.metaObj.Meta method)

 	sandwich() (tools.simplifiedLikelihoods.Data method)

 	selectExpResultsWith() (tools.databaseBrowser.Browser method)

 	separate_cont_disc_plots() (in module tools.interactivePlotsHelpers)

 	setFinalState() (theory.branch.Branch method)

 	(theory.element.Element method)

 	setInfo() (theory.branch.Branch method)

 	setLogLevel() (in module tools.smodelsLogging)

 	setMasses() (theory.element.Element method)

 	setOptions() (tools.printer.BasicPrinter method)

 	setOutPutFile() (tools.printer.PyPrinter method)

 	(tools.printer.SLHAPrinter method)

 	(tools.printer.SummaryPrinter method)

 	(tools.printer.TxTPrinter method)

 	(tools.printer.XmlPrinter method)

 	setOutPutFiles() (tools.printer.MPrinter method)

 	setParameter() (tools.pythia6Wrapper.Pythia6Wrapper method)

 	setPrinterOptions() (tools.printer.MPrinter method)

 	should_color() (tools.smodelsLogging.ColorizedStreamHandler method)

 	signals() (tools.simplifiedLikelihoods.Data method)

 	simParticles() (in module theory.particleNames)

 	simplifiedLikelihoods (module)

 	
 	size() (tools.caching.Cache static method)

 	slhaChecks (module)

 	slhaDecomposer (module)

 	SLHAPrinter (class in tools.printer)

 	SlhaStatus (class in tools.ioObjects)

 	SModelS Guide

 	SModelS Manual

 	SModelS Structure

 	SModelS Tools

 	SModelSExperimentError

 	smodelsLogging (module)

 	SModelSTheoryError

 	smodelsTools (module)

 	SmsEvent (class in theory.lheReader)

 	sort() (theory.crossSection.XSectionList method)

 	(tools.ioObjects.ResultList method)

 	sortBranches() (theory.element.Element method)

 	sortDataSets() (experiment.datasetObj.CombinedDataSet method)

 	sortParticles() (theory.branch.Branch method)

 	stringTools (module)

 	sumBR() (tools.ioObjects.SlhaStatus method)

 	SummaryPrinter (class in tools.printer)

 	switchBranches() (theory.element.Element method)

T

 	
 	tempDirectory() (tools.wrapperBase.WrapperBase method)

 	testLSP() (tools.ioObjects.SlhaStatus method)

 	testPoint() (in module tools.modelTester)

 	testPoints() (in module tools.modelTester)

 	theory (module)

 	Theory Definitions

 	Theory Predictions

 	theory.__init__ (module)

 	theory.auxiliaryFunctions (module)

 	theory.branch (module)

 	theory.clusterTools (module)

 	theory.crossSection (module)

 	theory.element (module)

 	theory.exceptions (module)

 	theory.lheDecomposer (module)

 	theory.lheReader (module)

 	theory.particleNames (module)

 	theory.slhaDecomposer (module)

 	theory.theoryPrediction (module)

 	theory.topology (module)

 	TheoryPrediction (class in theory.theoryPrediction)

 	theoryPrediction (module)

 	TheoryPredictionList (class in theory.theoryPrediction)

 	theoryPredictionsFor() (in module theory.theoryPrediction)

 	Timeout (class in tools.timeOut)

 	timeOut (module)

 	ToolBox (class in tools.toolBox)

 	toolBox (module)

 	tools (module)

 	tools.__init__ (module)

 	tools.asciiGraph (module)

 	tools.caching (module)

 	tools.colors (module)

 	tools.coverage (module)

 	tools.crashReport (module)

 	
 	tools.databaseBrowser (module)

 	tools.externalPythonTools (module)

 	tools.interactivePlots (module)

 	tools.interactivePlotsHelpers (module)

 	tools.ioObjects (module)

 	tools.lheChecks (module)

 	tools.modelTester (module)

 	tools.nllFastWrapper (module)

 	tools.physicsUnits (module)

 	tools.printer (module)

 	tools.pyhfInterface (module)

 	tools.pythia6Wrapper (module)

 	tools.pythia8particles (module)

 	tools.pythia8Wrapper (module)

 	tools.runSModelS (module)

 	tools.runtime (module)

 	tools.simplifiedLikelihoods (module)

 	tools.slhaChecks (module)

 	tools.smodelsLogging (module)

 	tools.smodelsTools (module)

 	tools.stringTools (module)

 	tools.timeOut (module)

 	tools.toolBox (module)

 	tools.wrapperBase (module)

 	tools.xsecComputer (module)

 	Topology (class in theory.topology)

 	topology (module)

 	TopologyList (class in theory.topology)

 	toStr() (theory.element.Element method)

 	totalChi2() (experiment.datasetObj.CombinedDataSet method)

 	totalCovariance() (tools.simplifiedLikelihoods.Data method)

 	TxName (class in experiment.txnameObj)

 	TxNameData (class in experiment.txnameObj)

 	txnameObj (module)

 	TxTPrinter (class in tools.printer)

U

 	
 	ulSigma() (tools.pyhfInterface.PyhfUpperLimitComputer method)

 	(tools.simplifiedLikelihoods.UpperLimitComputer method)

 	Uncovered (class in tools.coverage)

 	UncoveredClass (class in tools.coverage)

 	UncoveredClassifier (class in tools.coverage)

 	UncoveredList (class in tools.coverage)

 	UncoveredTopo (class in tools.coverage)

 	
 	unlink() (tools.pythia6Wrapper.Pythia6Wrapper method)

 	(tools.pythia8Wrapper.Pythia8Wrapper method)

 	updateBinaryFile() (experiment.databaseObj.Database method)

 	updateSLHAStatus() (tools.ioObjects.OutputStatus method)

 	updateStatus() (tools.ioObjects.OutputStatus method)

 	UpperLimitComputer (class in tools.simplifiedLikelihoods)

 	Using SModelS

V

 	
 	var_s() (tools.simplifiedLikelihoods.Data method)

 	versionFromFile() (experiment.metaObj.Meta method)

 	
 	vertInStr() (in module theory.particleNames)

 	visible() (tools.ioObjects.SlhaStatus method)

W

 	
 	warn (tools.colors.Colors attribute)

 	What's New

 	WrapperBase (class in tools.wrapperBase)

 	wrapperBase (module)

 	
 	writeIgnoreMessage() (in module theory.slhaDecomposer)

 	writePickle() (experiment.expResultObj.ExpResult method)

 	writeToFile() (tools.xsecComputer.ArgsStandardizer method)

 	wsMaker() (tools.pyhfInterface.PyhfUpperLimitComputer method)

X

 	
 	XmlPrinter (class in tools.printer)

 	XSecComputer (class in tools.xsecComputer)

 	xsecComputer (module)

 	
 	XSection (class in theory.crossSection)

 	XSectionInfo (class in theory.crossSection)

 	XSectionList (class in theory.crossSection)

 	xsecToBlock() (tools.xsecComputer.XSecComputer method)

Y

 	
 	yellow (tools.colors.Colors attribute)

Z

 	
 	zeroSignal() (tools.simplifiedLikelihoods.Data method)

smodelsTools.py database-browser [-h] -p PATH_TO_DATABASE [-t]

	arguments:

	
	-h, --help

	show this help message and exit

	-p PATH_TO_DATABASE, --path_to_database PATH_TO_DATABASE

	path to SModelS database

	-t, --text

	load text database, dont even search for binary
database file

smodelsTools.py fixpermissions [-h]

	arguments:

	
	-h, --help

	show this help message and exit

smodelsTools.py interactive-plots [-h] [-p PARAMETERS] -f SMODELSFOLDER -s SLHAFOLDER [-o OUTPUTFOLDER] [-N NPOINTS] [-v VERBOSITY]

	arguments:

	
	-h, --help

	show this help message and exit

	-p PARAMETERS, --parameters PARAMETERS

	path to the parameters file [./iplots_parameters.py]

	-f SMODELSFOLDER, --smodelsFolder SMODELSFOLDER

	path to the smodels folder with the SModelS python output files.

	-s SLHAFOLDER, --slhaFolder SLHAFOLDER

	path to the SLHA folder with the SLHA input files.

	-o OUTPUTFOLDER, --outputFolder OUTPUTFOLDER

	path to the output folder, where the plots will be stored. [./iplots]

	-N NPOINTS, --npoints NPOINTS

	How many (randomly selected) points will be included in the plot. If -1 all points will be read and included (default = -1).

	-v VERBOSITY, --verbosity VERBOSITY

	Verbosity (debug, info, warning, error)

smodelsTools.py lhechecker [-h] -f FILENAME

	arguments:

	
	-h, --help

	show this help message and exit

	-f FILENAME, --filename FILENAME

	name of input LHE file

runSModelS.py [-h] -f FILENAME [-p PARAMETERFILE] [-o OUTPUTDIR] [-d] [-t] [-C] [-V] [-c] [-v VERBOSE] [-T TIMEOUT]

	arguments:

	
	-h, --help

	show this help message and exit

	-f FILENAME, --filename FILENAME

	name of SLHA or LHE input file or a directory path (required argument). If a directory is given, loop over all files in the directory

	-p PARAMETERFILE, --parameterFile PARAMETERFILE

	name of parameter file, where most options are defined (optional argument). If not set, use all parameters from smodels/etc/parameters_default.ini

	-o OUTPUTDIR, --outputDir OUTPUTDIR

	name of output directory (optional argument). The default folder is: ./results/

	-d, --development

	if set, SModelS will run in development mode and exit
if any errors are found.

	-t, --force_txt

	force loading the text database

	-C, --colors

	colored output

	-V, --version

	show program’s version number and exit

	-c, --run-crashreport

	parse crash report file and use its contents for a SModelS run. Supply the crash file simply via ‘– filename myfile.crash’

	-v VERBOSE, --verbose VERBOSE

	sets the verbosity level (debug, info, warning, error). Default value is info.

	-T TIMEOUT, --timeout TIMEOUT

	define a limit on the running time (in secs).If not set, run without a time limit. If a directory is given as input, the timeout will be applied for each individual file.

smodelsTools.py slhachecker [-h] [-xS] [-s SIGMACUT] [-illegal] [-dB] -f FILENAME

	arguments:

	
	-h, --help

	show this help message and exit

	-xS, --xsec

	turn off the check for xsection blocks

	-s SIGMACUT, --sigmacut SIGMACUT

	give sigmacut in fb

	-illegal, --illegal

	turn on check for kinematically forbidden decays

	-dB, --decayBlocks

	turn off the check for missing decay blocks

	-f FILENAME, --filename FILENAME

	name of input SLHA file

smodelsTools.py toolbox [-h] [-c] [-l] [-m]

	arguments:

	
	-h, --help

	show this help message and exit

	-c, --colors

	turn on terminal colors

	-l, --long

	long output lines

	-m, --make

	compile packages if needed

smodelsTools.py xseccomputer [-h] [-s SQRTS [SQRTS …]] [-e NEVENTS] [-v VERBOSITY] [-c NCPUS] [-p] [-P] [-q] [-C] [-k] [-6] [-8] [-n] [-N] [-O] -f FILENAME

	arguments:

	
	-h, --help

	show this help message and exit

	-s SQRTS, --sqrts SQRTS

	sqrt(s) TeV. Can supply more than one value (as a space separated list). Default is both 8 and 13.

	-e NEVENTS, --nevents NEVENTS

	number of events to be simulated.

	-v VERBOSITY, --verbosity VERBOSITY

	Verbosity (debug, info, warning, error)

	-c NCPUS, --ncpus NCPUS

	number of cores to be used simultaneously. -1 means ‘all’.

	-p, --tofile

	write cross sections to file (only highest order)

	-P, --alltofile

	write all cross sections to file, including lower
orders

	-q, --query

	only query if there are cross sections in the file

	-C, --colors

	colored terminal output

	-k, --keep

	do not unlink temporary directory

	-6, --pythia6

	use pythia6 for LO cross sections

	-8, --pythia8

	use pythia8 for LO cross sections (default)

	-n, --NLO

	compute at the NLO level (default is LO)

	-N, --NLL

	compute at the NLO+NLL level (takes precedence over
NLO, default is LO)

	-O, --LOfromSLHA

	use LO cross sections from file to compute the NLO or
NLL cross sections

	-f FILENAME, --filename FILENAME

	SLHA file to compute cross sections for. If a directory is given, compute cross sections for all files in directory.

 _images/databaseScheme.png
BASIC DATABASE STRUCTURE

(E.g. ATLAS-CONF-2013-047)

BExperimental Result (UL Type) |

~{ B ATLAS

I SModels-Database ‘ ‘:

=) Experimental Result (EM Type)
(E.g. ATLAS-CONF-2013-047-eff) |—

B

=) Experimental Result (UL Type)
(E.g. CMS-SUS-12-024)

(137 |

=) Experimental Result (EM Type)
(E.g. CMS-SUS-12-024-¢ff)

(Eg MET2_HT1_nb3) N

r=

UL map
DataSet (€5 T20x)

(E.g. data) F

EM map
DatasSet1 B (Eg. TGQ.txt)
(Eg data-cutl)
EREEEEEEN .
EM map
B DataSet2 (Eg. T2bb.txt)

(E.g. data-cut2) F

UL map
DataSet (€5 T20x)
(Eg data) —
m
Dataset1 e

(Eg. T1bbbb.txt)

_images/decomp1B.png
> Branches
------ — ‘ -/-

\ ——L—L—L— Branches

Primary Mothers ‘ : f ‘ :

_images/branchTopB.png

_images/constraintExample.png
150

100

- ATLAS Preliminary

= == Expected limit (+ o-exp) 1334 46.98 14.159.33

T
~—n
I

I Ldt=20.3fb" Vs=8 TeV
Susy

Observed limit (+1 o-theory) 6520 30.92 14.07 9.00

~ 46.49 13.26 8.53 6.72
[LEP [T excluded
All limits at 95% CL

16.8610.82 6.12 27.17 443 3.47 378 297 3.7

94.43 15.47 1001 7.57 4.78 3.99

360 340 350 294

63.58 18.78 10.27 8.36 6.08 4.65 3.79

893 7.69 5.91 4.

1276

8.06 594 502 4.1

1489 869 647 518 454

1275 826

6.40

5.00 432 3.

767 705 570 381 376 3.3

5.23

459419 3.77 3.

1587 875 789 589 416 411 361

3234 1227 826 698

451 3.96

4.09 354

13.97

7.35

420 335330 292
1605 1082 7.53 597 430 375 312 3.

1600 | 1 zz1 1 Loz iaes 1 ake

100 150 200 250 300

[I‘”)(1 %, 7

595 452 416 354 3.10

.84 337 332 358 294 313]
329 294 313 301 276 |

342 300 302 283 295

.11 304 285 295 3.05
297 279 249 266 262 _|
3.00 261 298 254

9 295 268 266 269

69 274 252 249 266 |

5.69

350

~

m()) [GeV]

Numbers give 95% excluded model cross s

_images/delaunay.png
Delaunay triangulation

CMS-SUS-

13-013 (T6LEWW)

a00

300

m3 [GeVPoO

100

650

600

400

300

m2 [GeV]

450 m1 [GeV]

200

350

100

300

_images/elSorting.png
It v v
Element 1 Element 2
300 GeV 50 GeV

Element 3

600 GeV,

600 GeV, 600 GeV,

_images/decomp2B.png
Elements

Primary Mothers

_images/decompScheme1b.png
B
A \ B Fihomp X BR(A = B) X Fi

A p

— X ‘Fc/léz"splaccd B
A x FA.. AN\ X Fp % BRIA— B) x F5,,
B /
A = b(Fi prompt MQ— > ‘/T;Wompt X BR(A — B)

XBR A — B Xf prompt X BR(B — D)
/ : e e

OC Fprompt

. xBR(A — C)

_images/elementB.png
Mass3 Mass5

Final State

Final State

_images/elementInclusive.png
* (any SM particle)

HSCP

HSCP

* (any SM particle)

_images/invCompB.png
Invisible Final State

_images/massCompB.png

nav.xhtml

 Table of Contents

 		
 SModelS User Manual

 		
 What’s New

 		
 New in Version 1.2.4:

 		
 New in Version 1.2.3:

 		
 New in Version 1.2.2:

 		
 New in Version 1.2.1:

 		
 New in Version 1.2.0:

 		
 New in Version 1.1.3:

 		
 New in Version 1.1.2:

 		
 New in Version 1.1.1:

 		
 New in Version 1.1.0:

 		
 Installation and Deployment

 		
 Standard Installation

 		
 Installation Methods

 		
 Installing the SModelS Database

 		
 Adding FastLim data

 		
 Adding one’s own results

 		
 System-specific Installation Instructions

 		
 Installation on Ubuntu >= 16.04

 		
 Installation on SL7

 		
 Installation on SL6

 		
 Installation on SL5 and similar distributions

 		
 Installation on other platforms or without superuser privileges using Anaconda

 		
 Installation of the C++ interface

 		
 Using SModelS

 		
 runSModelS.py

 		
 The Parameters File

 		
 The Output

 		
 Example.py

 		
 SModelS Tools

 		
 Cross Section Calculator

 		
 Input File Checks

 		
 LHE File Checker

 		
 SLHA File Checker

 		
 Database Browser

 		
 Interactive Plots Maker

 		
 iplots parameters file

 		
 File Permissions Fixer

 		
 ToolBox

 		
 Detailed Guide to SModelS

 		
 Basic Concepts and Definitions

 		
 Simplified Model Definitions

 		
 Database Definitions

 		
 SModelS Structure

 		
 Basic Input

 		
 Decomposition into Simplified Models

 		
 Theory Predictions

 		
 Database of Experimental Results

 		
 Confronting Predictions with Experimental Limits

 		
 Topology Coverage

 		
 Output Description

 		
 Screen (Stdout) Output

 		
 Log Output

 		
 Summary File Output

 		
 Python Output

 		
 XML Output

 		
 SLHA Output

 		
 How To’s

 		
 To try out the examples in interactive mode:

 		
 Main examples:

 		
 Examples displaying several functionalities:

 		
 Examples using the cross-section computer:

 		
 Examples using the Database Browser

 		
 Examples using the Interactive Plots tool

 		
 SModelS Code Documentation

 		
 Contents

 		
 theory package

 		
 experiment package

 		
 tools package

 		
 Indices and tables

 		
 C++ Interface

_images/eventExample.png
<LesHoucheskvents version="1.0">

<header>
#Additional information
</header>
<init>
2212 2212 0.40000000000E+04 0.40000000000E+04 0 0 10042 10042 3 1
0.13448000000E+02 ©0.11328000000E+00 0.26896000000E+01 ¢}
c</init>
‘<event>
'8 0 0.2689600E+01 000000E+04 0.7957747E-01 0.9421117E-01
2 -1 ¢} ¢} 0 0.00000000000E+00 ©.00000000000E+00 ©0.12216473395E+04
-2 -1 ¢} ¢}] .00000000000E+00 0.00000000000E+00 -0.95840193959E+03
-.6100002 2 1 2 502 .12085632485E+03 -0.21778312976E+03 0.82072277461E+03
. -6109992 2 1 2 ¢} N2085632485E+03 0.21778312976E+03 -0.55747737471E+03
. 2 1 3 3 502 0 -0.8418]441025E+02 -0.27383300132E+03 0.36569663377E+03
5100022 1 3 3 ¢} 0 o. 0.56049871558E+02 0.45502614084E+03
........ -2 1 4 4 0 502 0.10854022 0.26478799687E+03 -0.18273879961E+03
- 5100022 1 4 4 ¢} 0 -0.22939655164ER .47004867115E+02 -0.37473857510E+03
‘</event>
<event>
Weight:

13.448 pb
/ F#events

[oRoNoNoNo NN X<

.12216473395E+04
.95840193960E+03
.11732307109E+04
.10068185682E+04
.46454822740E+03
.70868248348E+03
.33953958975E+03
.66727897847E+03

Mass Array:

[oRoNoNoNo NN X<

.30000000261E-02
.30000000261E-02
.80000000000E+03
.80000000000E+03
.30000000261E-02
.50000000000E+03
.30000000261E-02
.50000000000E+03

([800 GeV;, 500 GeV], [800 GeV, 500 GeV]]

[oRoNoNoNo NN X<

RREROO R

_images/globTopB.png

_images/theoryPredScheme.png
Hlements from Decomposition Elements from Selection ('lusters
. , M theory prediction
Element Selection Element Clustering
—————————————————— ———————————————————
Apply Efficiencies Group Elements
(=0 or 1 for UL-type results) (group all for EM-type results)

Sum Weights o
—— = theory prediction

weights = 0 X BR welghts = 0 X BR X €

_images/topSchemeB.png
‘_Final States
(Z-even)™ [Vertex

g
2 B

BSM states Branch

/ (Z, odd)

Final States
(Z-even)

Vertex -

Branch

_images/massNotationB.png
Branch Branch

) IT—|

=[[Mass2, Mass4] » [Mass1, Mass3,Mass5]]

= [Mass1, Mass3,Mass5]

= [Mass2, Mass4]

_images/smodelsScheme.png
Input
(SLHA or LHE file)

Compare
Decompose with Experimental Limits
full Model

atC
with Experimental Results

_images/xsecBlock.png
Center-of-mass energy PDGs of incoming PDGs of outgoing

Block identifier (in GeV) partons # outgoing partons Comment tag
partons

\ / / / / / R

XSECTION 8000.0 2212 2212 -1000002 1000021 # Nevts: 10000 xsec unit: pb

0. 001436 SModelS 1.1
Scale scheme / / \

QCD . PDF ID CI‘Obb section Additional
order EW Factori- Renorma- (in pb) information

Order Zation lization
scale gcale

_images/elementInclusive2.png
MET

~ [*] (any branch)
7

HSCP

* (any SM particle)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_images/DatabaseObjects.png
OBJECT STRUCTURE

I SModels-Database

‘ =i Database (class) H =Database.expResultList (list)

=] Experimental Result (UL Type)
(E.g. ATLAS-CONF-2013-047)

globalinfo.txt

(‘ & ExpResult.globallnfo (Info class) ‘

datalnfo.txt

{ & DataSet.datalnfo (Info class) ‘

wl ExpResult (class)

DataSet
(E.g. data)

TxName1.txt
(Eg. T2.txt)

& TxName (class)

TxName2.txt
(Eg. T2tt.txt)

«{ & TxName (class)

{ =ExpResult.dataSets (list) H il DataSet (class)

= DataSet.txnamelist (list)

=] Experimental Result (EM Type)
(E.g. ATLAS-CONF-2013-047-¢ff)

globalinfo.txt

& ExpResult.globallnfo (Info class) ‘

datalnfo.txt

{ & DataSet.datalnfo (Info class) ‘

DatasSet1
(E.g. data-cut1)

@l DataSet (class)

TxName1.txt
(Eg. TGQ.txt)

& TxName (class)

TxName2.txt
(Eg. T2tt.txt)

«{ & TxName (class)

wl ExpResult (class)

= DataSet.txnamelist (list)

datalnfo.txt

{ & DataSet.datalnfo (Info class) ‘

DatasSet2
(E.g. data-cut2)

@l DataSet (class)

{ =ExpResult.dataSets (list)

TxName1.txt
(Eg. T2bb.txt)

& TxName (class)

TxName2.txt
(Eg. T1bbbb.txt)

«{ & TxName (class)

= DataSet.txnamelist (list)

_static/file.png

_images/EMcluster.png
="
“
4‘ ~
l’ ’
I' ’
’
e ’
4 s ——
1
[|
|} '
‘\
S “
5
LS)\
\~ '
~ -
§~ —
S, 6

Selected Elements:

Cluster

|
jet u ut
l' l' "

l' l' "
meessee@ e e—— e
*

\ \ A

‘\ ‘\ “

: + +
jet 1Y
’ ! J ’

q ! J q

’ ’ ’

’ ’ ’
meessee@ e e—— e ——
*

A A A

 }))

 })))
T
7!

~
~n
~
+
T RS
? 5
’ “
.
o N
* 1
]
I
= /!
. .
L 4
s R
) | o
L 4
Toe""
—"

ST

_static/minus.png

_static/down.png

_images/DatabaseFolders.png
FOLDER STRUCTURE

*{ B ATLAS

I SModels-Database %

B8 Tev

*{ B cms

]

13 Tev

i

=] Experimental Result (UL Type)
(E.g. ATLAS-CONF-2013-047)

DataSet

(E.g. data-cut1)

=] Experimental Result (EM Type)
(E.g. ATLAS-CONF-2013-047-¢ff)

=] Experimental Result (UL Type)
(Eg. CMS-SUS-12-024)

(E.g. data-cut2)

=] Experimental Result (EM Type)
(E.g. CMS-SUS-12-024-eff)

(Eg. MET2_HT1_nb3)

(E.g. MET2_HT2.nb3)

(E.g. data)

DatasSet1

DatasSet2

DataSet
(E.g. data)

DatasSet1

DatasSet2

_images/T2bbWWoff_17.png
CMS-PAS-SUS-16-052-agg (efficiencyMap)
T200WWoff :pp = TR.T = bWr T,

m=x,m_=x -y
3
F20% (Shladel S
exclusion (SModelS)|
exclusion (official) 25
+ +1o (official)
2
- 1
—1
0.5
L PRI E R 0

i i
300 400 500 600 700

X 17 aggregate datasets

_images/T2bbWWoff_44.png
T2bbWWo

m=x, m

o TRT bWy
=

CMS-PAS-SUS-1

0

6-052 (efficiencyMap)

........ — WINVPVISINY
exclusion (SModelS))|
exclusion (official)

+1o (official)

500
X

600 700

w

S
n

5]

44 datasets

_images/EMexample.png
Mass axis

Element:

([let]], [ljetl]]

T T g 1 T T
PP~ 48,8 q%; m@)>>m(@)

soo[-

700

m_ e (GeV)

CMS, Vs=8TeV

Efficiency grid

300 400 500 600 700 800 900 1000

Mequar (GV)

Mass axis

_images/EMselection.png
welght X €, weight X €9 weight Xej welght X ey
- -
et jet o .
Vi ’ L/ q ! T
q ’ ’ q L/
q ’ L/ q ’
q ’ ’ q ’
L} s A))) A)
. . . Y .
) | .. '+ Y !
e jet p v —

Data Set €0 000 Element Selection

— D)) \\D)
\\D)
X z X z
o
g = = =
= = = =
0 T T T
) - ©
= 5 2 5
B C 5 5
= = = =
’ .] /’L /L 7_—|—
’ ’ ’ ’
’ q ’ q
’ q ’ ’
.. e —— q q q ’
*
T # * *
) | A Y A A A Y
) |)) |) | | |
v N, N N ‘\
€ jet 1 7 —

_static/ajax-loader.gif

_images/TChiWH_bestSR.png
ATLAS-SUSY-2019-08

. L S 0.0
TChiWH: pp — X, %, %, X, > HW X, X,

(efficiencyMap)

250

best SR

e +20% (SModelS)

exclusion (SModelS)
exclusion (official)
= +1o (official)

_images/TChiWH_pyhf.png
ATLAS-SUSY-2019-08

; 0t 0 s 0.0
TChiWH: pp — ¥, ¥,. X, X, = HW X, %,

(efficiencyMap)

m_o=X, M_.=y
X, 1

pyhf combining 9 SRs

250

== +20% (SModelS)

exclusion (SModelS)
exclusion (official)
+1o (official)

_static/up.png

_images/T2bbWWoff_bestSR.png
CMS-PAS-SUS-16-052-best (efficiencyMap)

T200WWoff :pp — 57 bW §,
m=x.m_=x-y
! x,

70

60

50

40

30

20

_images/ULselection.png
weight weight
e’ w

J

’ J/
r .
’ .

—_——
UL Constraint: ——
€+ /’L+ “‘

(&

-
=

+

’
/!
’
’
——— .
reereteete et st e et s saesae e st essaessaessnsesnnessaessasssnnssnnrensessneesns Flement Selection
——

’
.
v
’
——
Y Y
. .
kY kY
Y LY

e K

weight — weight x1
weight — weight x0
weight — weight x0

e jet '

t

~
~

~~
~

~

~~

~
~
~“~

Decomposition Elements:

weight — weight x1
. =
[}
\‘ : | }
I

@
<
Q
~
=
-
=

_images/ULcluster.png
Cluster A Cluster B

- A
- ~
- ~

e b
L et I
. J; s
r mi 4 Mo my t sy \
——— ———
i]
' ’
—— ——————
N My \Mo my My
AN Y .
QQ A _ Y
Sso (& /l,‘

OO UOURRRRRR)i Ic30 s oy s Ll @ LU= eI wbs T

‘ et * ‘ et s

1

. ’ .
. o . 1 A4 ! oA
my Jme my iy My & M,
1 . ———— ——— ———
Selected Elements:
—— —_—C—— ———
RN RN M, % M,
“ “ — ‘l
\/ M B
Mass Distance < maxDist Mass Distance < maxDist

Mass Distance > maxDist

_images/ULexample.png
Constraint:

/ ([[iet]], [ljet]]
1 T 10

> [PR R)
& 8001 ppoada~ qy; m(@)>>m(@) s
= A imit + ©
% 700|- Expected Limit +1c exp. <
£ | GNLO+NLL =
o' +1c theory 1 E .
600 r aL+ aR’ lisd+548 = Conditions:
i —=-1,_onl 2 None
Mass axis 500 L only g
| cms,11.7 i’ g
- : 107 O
4001~ 5 -8 Tev 2
i I
=2
Cross-section

upper limits

0
300 400 500 600 700 800 900 1000

Mequar (GEV)

_images/branchElB.png
Mass2 Mass3
Mass 1 MET

_images/bracketNotation2.png
1

Branch Branch
/ HSCP o —[17H (1] A A
[17] [V] |—| |_|

=[[.[v1], (171111 (HSCP, MET)

Thay |

e = [[l—l—|—]] Vertex Vertex Vertex

MET

_images/bracketNotationB.png
Branch Branch

=[[111,[v]] A A

1 1

=[Nt v

Vol

= l—l—l—]] Vertex Vertex Vertex

_static/up-pressed.png

_static/plus.png

